Dushaq Ghada, Serunjogi Solomon, Tamalampudi Srinivasa R, Rasras Mahmoud
Department of Electrical and Computer Engineering, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
NYU Tandon School of Engineering, New York University, New York, NY, USA.
Light Sci Appl. 2024 Apr 19;13(1):92. doi: 10.1038/s41377-024-01432-2.
Tunable optical materials are indispensable elements in modern optoelectronics, especially in integrated photonics circuits where precise control over the effective refractive index is essential for diverse applications. Two-dimensional materials like transition metal dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across short-wave infrared (SWIR) regions while enabling precise phase control at low signal loss within a compact footprint remains an ongoing challenge. In this work, we unveil the robust electro-refractive response of multilayer ferroionic two-dimensional CuCrPS (CCPS) in the near-infrared wavelength range. By integrating CCPS into silicon photonics (SiPh) microring resonators (MRR), we enhance light-matter interaction and measurement sensitivity to minute phase and absorption variations. Results show that electrically driven Cu ions can tune the effective refractive index on the order of 2.8 × 10 RIU (refractive index unit) while preserving extinction ratios and resonance linewidth. Notably, these devices exhibit low optical losses and excellent modulation efficiency of 0.25 V.cm with a consistent blue shift in the resonance wavelengths among all devices for either polarity of the applied voltage. These results outperform earlier findings on phase shifters based on TMDs. Furthermore, our study demonstrates distinct variations in electro-optic tuning sensitivity when comparing transverse electric (TE) and transverse magnetic (TM) modes, revealing a polarization-dependent response that paves the way for diverse applications in light manipulation. The combined optoelectronic and ionotronic capabilities of two-terminal CCPS devices present extensive opportunities across several domains. Their potential applications range from phased arrays and optical switching to their use in environmental sensing and metrology, optical imaging systems, and neuromorphic systems in light-sensitive artificial synapses.
可调谐光学材料是现代光电子学中不可或缺的元素,特别是在集成光子电路中,其中对有效折射率的精确控制对于各种应用至关重要。二维材料,如过渡金属二硫属化物(TMDs)和石墨烯,对外部刺激表现出显著的光学响应。然而,在短波红外(SWIR)区域实现独特的调制,同时在紧凑的尺寸内以低信号损耗实现精确的相位控制,仍然是一个持续的挑战。在这项工作中,我们揭示了多层铁离子二维CuCrPS(CCPS)在近红外波长范围内强大的电折射响应。通过将CCPS集成到硅光子学(SiPh)微环谐振器(MRR)中,我们增强了光与物质的相互作用以及对微小相位和吸收变化的测量灵敏度。结果表明,电驱动的铜离子可以将有效折射率调整到2.8×10 RIU(折射率单位)的量级,同时保持消光比和共振线宽。值得注意的是,这些器件表现出低光学损耗和0.25 V.cm的优异调制效率,并且对于施加电压的任何极性,所有器件的共振波长都有一致的蓝移。这些结果优于基于TMDs的移相器的早期发现。此外,我们的研究表明,在比较横向电场(TE)和横向磁场(TM)模式时,电光调谐灵敏度存在明显差异,揭示了一种偏振依赖响应,为光操纵中的各种应用铺平了道路。两端CCPS器件的光电和离子电子功能在多个领域提供了广泛的机会。它们的潜在应用范围从相控阵和光开关到环境传感和计量、光学成像系统以及光敏感人工突触中的神经形态系统。