Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, China.
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
Nat Commun. 2023 Feb 15;14(1):840. doi: 10.1038/s41467-023-36512-1.
Multiferroic materials have great potential in non-volatile devices for low-power and ultra-high density information storage, owing to their unique characteristic of coexisting ferroelectric and ferromagnetic orders. The effective manipulation of their intrinsic anisotropy makes it promising to control multiple degrees of the storage "medium". Here, we have discovered intriguing in-plane electrical and magnetic anisotropies in van der Waals (vdW) multiferroic CuCrPS. The uniaxial anisotropies of current rectifications, magnetic properties and magnon modes are demonstrated and manipulated by electric direction/polarity, temperature variation and magnetic field. More important, we have discovered the spin-flop transition corresponding to specific resonance modes, and determined the anisotropy parameters by consistent model fittings and theoretical calculations. Our work provides in-depth investigation and quantitative analysis of electrical and magnetic anisotropies with the same easy axis in vdW multiferroics, which will stimulate potential device applications of artificial bionic synapses, multi-terminal spintronic chips and magnetoelectric devices.
多铁材料由于其共存的铁电和铁磁有序的独特特性,在低功耗和超高密度信息存储的非易失性器件中有很大的应用潜力。对其本征各向异性的有效控制使得控制多个存储“介质”的自由度变得很有前景。在这里,我们在范德瓦尔斯(vdW)多铁性 CuCrPS 中发现了有趣的面内电各向异性和磁各向异性。通过电方向/极性、温度变化和磁场,证明和操纵了电流整流、磁性能和磁振子模式的单轴各向异性。更重要的是,我们发现了对应于特定共振模式的自旋倾斜转变,并通过一致的模型拟合和理论计算确定了各向异性参数。我们的工作对 vdW 多铁性材料中具有相同易轴的电各向异性和磁各向异性进行了深入的研究和定量分析,这将激发人工仿生突触、多终端自旋电子芯片和磁电器件等潜在的器件应用。