Suppr超能文献

利用人工智能简化神经放射学工作流程,以改善脑血管结构监测。

Streamlining neuroradiology workflow with AI for improved cerebrovascular structure monitoring.

作者信息

Banerjee Subhashis, Nysjö Fredrik, Toumpanakis Dimitrios, Dhara Ashis Kumar, Wikström Johan, Strand Robin

机构信息

Department of Information Technology, Uppsala University, Uppsala, Sweden.

Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden.

出版信息

Sci Rep. 2024 Apr 22;14(1):9245. doi: 10.1038/s41598-024-59529-y.

Abstract

Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) can provide radiologists with a more detailed and precise view of these vessels. This paper introduces a domain generalized artificial intelligence (AI) solution for volumetric monitoring of cerebrovascular structures from multi-center MRAs. Our approach utilizes a multi-task deep convolutional neural network (CNN) with a topology-aware loss function to learn voxel-wise segmentation of the cerebrovascular tree. We use Decorrelation Loss to achieve domain regularization for the encoder network and auxiliary tasks to provide additional regularization and enable the encoder to learn higher-level intermediate representations for improved performance. We compare our method to six state-of-the-art 3D vessel segmentation methods using retrospective TOF-MRA datasets from multiple private and public data sources scanned at six hospitals, with and without vascular pathologies. The proposed model achieved the best scores in all the qualitative performance measures. Furthermore, we have developed an AI-assisted Graphical User Interface (GUI) based on our research to assist radiologists in their daily work and establish a more efficient work process that saves time.

摘要

用于检查颅内血管的放射成像对于术前规划和术后随访至关重要。从时间飞跃磁共振血管造影(TOF-MRA)中自动分割脑血管解剖结构可以为放射科医生提供这些血管更详细和精确的视图。本文介绍了一种用于从多中心MRA中对脑血管结构进行体积监测的领域通用人工智能(AI)解决方案。我们的方法利用具有拓扑感知损失函数的多任务深度卷积神经网络(CNN)来学习脑血管树的体素级分割。我们使用去相关损失来实现编码器网络的领域正则化,并通过辅助任务提供额外的正则化,使编码器能够学习更高层次的中间表示以提高性能。我们使用来自六家医院扫描的多个私有和公共数据源的回顾性TOF-MRA数据集,将我们的方法与六种最先进的3D血管分割方法进行比较,这些数据集有无血管病变。所提出的模型在所有定性性能指标中取得了最佳分数。此外,我们基于我们的研究开发了一个人工智能辅助图形用户界面(GUI),以协助放射科医生进行日常工作,并建立一个更高效的工作流程,节省时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1647/11035663/7954caad2420/41598_2024_59529_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验