Suppr超能文献

BRAVE-NET:脑血管疾病患者的全自动脑动脉血管分割

BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease.

作者信息

Hilbert Adam, Madai Vince I, Akay Ela M, Aydin Orhun U, Behland Jonas, Sobesky Jan, Galinovic Ivana, Khalil Ahmed A, Taha Abdel A, Wuerfel Jens, Dusek Petr, Niendorf Thoralf, Fiebach Jochen B, Frey Dietmar, Livne Michelle

机构信息

CLAIM - Charité Lab for Artificial Intelligence in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.

Faculty of Computing, Engineering and the Built Environment, School of Computing and Digital Technology, Birmingham City University, Birmingham, United Kingdom.

出版信息

Front Artif Intell. 2020 Sep 25;3:552258. doi: 10.3389/frai.2020.552258. eCollection 2020.

Abstract

Arterial brain vessel assessment is crucial for the diagnostic process in patients with cerebrovascular disease. Non-invasive neuroimaging techniques, such as time-of-flight (TOF) magnetic resonance angiography (MRA) imaging are applied in the clinical routine to depict arteries. They are, however, only visually assessed. Fully automated vessel segmentation integrated into the clinical routine could facilitate the time-critical diagnosis of vessel abnormalities and might facilitate the identification of valuable biomarkers for cerebrovascular events. In the present work, we developed and validated a new deep learning model for vessel segmentation, coined BRAVE-NET, on a large aggregated dataset of patients with cerebrovascular diseases. BRAVE-NET is a multiscale 3-D convolutional neural network (CNN) model developed on a dataset of 264 patients from three different studies enrolling patients with cerebrovascular diseases. A context path, dually capturing high- and low-resolution volumes, and deep supervision were implemented. The BRAVE-NET model was compared to a baseline Unet model and variants with only context paths and deep supervision, respectively. The models were developed and validated using high-quality manual labels as ground truth. Next to precision and recall, the performance was assessed quantitatively by Dice coefficient (DSC); average Hausdorff distance (AVD); 95-percentile Hausdorff distance (95HD); and via visual qualitative rating. The BRAVE-NET performance surpassed the other models for arterial brain vessel segmentation with a DSC = 0.931, AVD = 0.165, and 95HD = 29.153. The BRAVE-NET model was also the most resistant toward false labelings as revealed by the visual analysis. The performance improvement is primarily attributed to the integration of the multiscaling context path into the 3-D Unet and to a lesser extent to the deep supervision architectural component. We present a new state-of-the-art of arterial brain vessel segmentation tailored to cerebrovascular pathology. We provide an extensive experimental validation of the model using a large aggregated dataset encompassing a large variability of cerebrovascular disease and an external set of healthy volunteers. The framework provides the technological foundation for improving the clinical workflow and can serve as a biomarker extraction tool in cerebrovascular diseases.

摘要

动脉脑血管评估对于脑血管疾病患者的诊断过程至关重要。非侵入性神经成像技术,如时间飞跃(TOF)磁共振血管造影(MRA)成像,在临床常规中用于描绘动脉。然而,它们仅通过视觉评估。集成到临床常规中的全自动血管分割可以促进对血管异常的紧急诊断,并可能有助于识别脑血管事件的有价值生物标志物。在本研究中,我们在一个大型的脑血管疾病患者汇总数据集上开发并验证了一种新的用于血管分割的深度学习模型,命名为BRAVE-NET。BRAVE-NET是一个多尺度三维卷积神经网络(CNN)模型,基于来自三项不同研究的264例脑血管疾病患者的数据集开发。实现了一个上下文路径,双重捕获高分辨率和低分辨率体积,并进行深度监督。将BRAVE-NET模型分别与基线Unet模型以及仅具有上下文路径和深度监督的变体进行比较。使用高质量的手动标注作为真值来开发和验证模型。除了精度和召回率外,还通过骰子系数(DSC)、平均豪斯多夫距离(AVD)、95%百分位数豪斯多夫距离(95HD)进行定量性能评估,并通过视觉定性评分进行评估。BRAVE-NET在动脉脑血管分割方面的性能超过了其他模型,DSC = 0.931,AVD = 0.165,95HD = 29.153。视觉分析表明,BRAVE-NET模型对错误标注也最具抗性。性能的提高主要归因于将多尺度上下文路径集成到三维Unet中,在较小程度上归因于深度监督架构组件。我们提出了一种针对脑血管病理学的动脉脑血管分割的新的先进技术。我们使用一个包含大量脑血管疾病变异性的大型汇总数据集和一组外部健康志愿者对该模型进行了广泛的实验验证。该框架为改进临床工作流程提供了技术基础,并可作为脑血管疾病中的生物标志物提取工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043b/7861225/60705cd5a448/frai-03-552258-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验