Suppr超能文献

预测与因果推断:治疗在临床预测模型中的作用。

Prediction meets causal inference: the role of treatment in clinical prediction models.

机构信息

Department of Biomedical Data Sciences, Leiden University Medical Center, Zone S5-P, PO Box 9600, 2300 RC, Leiden, The Netherlands.

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

出版信息

Eur J Epidemiol. 2020 Jul;35(7):619-630. doi: 10.1007/s10654-020-00636-1. Epub 2020 May 22.

Abstract

In this paper we study approaches for dealing with treatment when developing a clinical prediction model. Analogous to the estimand framework recently proposed by the European Medicines Agency for clinical trials, we propose a 'predictimand' framework of different questions that may be of interest when predicting risk in relation to treatment started after baseline. We provide a formal definition of the estimands matching these questions, give examples of settings in which each is useful and discuss appropriate estimators including their assumptions. We illustrate the impact of the predictimand choice in a dataset of patients with end-stage kidney disease. We argue that clearly defining the estimand is equally important in prediction research as in causal inference.

摘要

在本文中,我们研究了在开发临床预测模型时处理治疗的方法。类似于欧洲药品管理局最近为临床试验提出的估计量框架,我们提出了一个“预测量”框架,其中包含了在预测与基线后开始的治疗相关的风险时可能感兴趣的不同问题。我们给出了与这些问题匹配的估计量的正式定义,提供了每个估计量在有用的设置下的示例,并讨论了合适的估计量,包括它们的假设。我们在一个终末期肾病患者的数据集上说明了预测量选择的影响。我们认为,在预测研究中,与因果推断一样,清楚地定义估计量同样重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d3b/7387325/667c37e7b023/10654_2020_636_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验