Suppr超能文献

用于结构连接组分类的多头图卷积网络

Multi-Head Graph Convolutional Network for Structural Connectome Classification.

作者信息

Kazi Anees, Mora Jocelyn, Fischl Bruce, Dalca Adrian V, Aganj Iman

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA.

Radiology Department, Harvard Medical School, Boston, USA.

出版信息

Graphs Biomed Image Anal Overlapped Cell Tissue Dataset Histopathol (2023). 2024;14373:27-36. doi: 10.1007/978-3-031-55088-1_3. Epub 2024 Mar 10.

Abstract

We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain-connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, thoroughly capturing representations from the input data. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.

摘要

我们基于扩散磁共振图像得出的脑连接性来处理分类问题。我们提出了一种受图卷积网络(GCN)启发的机器学习模型,该模型以脑连接性输入图为基础,并通过具有多个头的并行GCN机制分别处理数据。所提出的网络设计简单,采用了不同的头,包括专注于边和节点的图卷积,从而全面捕捉输入数据的表示。为了测试我们的模型从脑连接性数据中提取互补且有代表性特征的能力,我们选择了性别分类任务。这量化了连接组因性别而异的程度,这对于增进我们对两性健康和疾病的理解非常重要。我们在两个公开可用的数据集上展示了实验结果:PREVENT-AD(347名受试者)和OASIS3(771名受试者)。与我们测试的现有机器学习算法相比,所提出的模型展现出了最高的性能,这些现有算法包括经典方法以及(图和非图)深度学习算法。我们对模型的每个组件进行了详细分析。

相似文献

1
Multi-Head Graph Convolutional Network for Structural Connectome Classification.用于结构连接组分类的多头图卷积网络
Graphs Biomed Image Anal Overlapped Cell Tissue Dataset Histopathol (2023). 2024;14373:27-36. doi: 10.1007/978-3-031-55088-1_3. Epub 2024 Mar 10.

本文引用的文献

1
Graph convolutional networks: a comprehensive review.图卷积网络:全面综述。
Comput Soc Netw. 2019;6(1):11. doi: 10.1186/s40649-019-0069-y. Epub 2019 Nov 10.
6
Metric learning with spectral graph convolutions on brain connectivity networks.基于脑连接网络的谱图卷积的度量学习。
Neuroimage. 2018 Apr 1;169:431-442. doi: 10.1016/j.neuroimage.2017.12.052. Epub 2017 Dec 24.
9
Structural and Functional Brain Abnormalities in Schizophrenia.精神分裂症患者大脑的结构和功能异常
Curr Dir Psychol Sci. 2010 Aug;19(4):226-231. doi: 10.1177/0963721410377601.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验