Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
Microbiol Spectr. 2024 Jun 4;12(6):e0396423. doi: 10.1128/spectrum.03964-23. Epub 2024 Apr 26.
The fastest replicating bacterium is a rising workhorse for molecular and biotechnological research with established tools for efficient genetic manipulation. Here, we expand on the capabilities of multiplex genome editing by natural transformation (MuGENT) by identifying a neutral insertion site and showing how two selectable markers can be swapped at this site for sequential rounds of natural transformation. Second, we demonstrated that MuGENT can be used for complementation by gene insertion at an ectopic chromosomal locus. Additionally, we developed a robust method to cure the competence plasmid required to induce natural transformation. Finally, we demonstrated the ability of MuGENT to create massive deletions; the 280 kb deletion created in this study is one of the largest artificial deletions constructed in a single round of targeted mutagenesis of a bacterium. These methods each advance the genetic potential of and collectively expand upon its utility as an emerging model organism for synthetic biology.
is an emerging model organism for molecular and biotechnological applications. Its fast growth, metabolic versatility, and ease of genetic manipulation provide an ideal platform for synthetic biology. Here, we develop and apply novel methods that expand the genetic capabilities of the model system. Prior studies developed a method to manipulate multiple regions of the chromosome in a single step. Here, we provide new resources that diversify the utility of this method. We also provide a technique to remove the required genetic tools from the cell once the manipulation is performed, thus establishing "clean" derivative cells. Finally, we show the full extent of this technique's capability by generating one of the largest chromosomal deletions reported in the literature. Collectively, these new tools will be beneficial broadly to the community and specifically to the advancement of as a model system.
是一种快速复制的细菌,它是分子和生物技术研究的新兴得力工具,具有高效遗传操作的既定工具。在这里,我们通过确定中性插入位点并展示如何在该位点交换两个可选择标记,从而扩展了自然转化(MuGENT)的多路基因组编辑功能,用于连续几轮的自然转化。其次,我们证明 MuGENT 可用于通过在异位染色体位置插入基因进行基因插入来进行互补。此外,我们开发了一种强大的方法来治愈诱导自然转化所需的感受态质粒。最后,我们展示了 MuGENT 进行大规模缺失的能力;在这项研究中创建的 280kb 缺失是在细菌的靶向诱变一轮中构建的最大人工缺失之一。这些方法都提高了 的遗传潜力,并共同扩展了其作为合成生物学新兴模式生物的用途。
是分子和生物技术应用的新兴模式生物。它的快速生长、代谢多样性和易于遗传操作为合成生物学提供了理想的平台。在这里,我们开发并应用了新的方法来扩展 模型系统的遗传能力。以前的研究开发了一种在单个步骤中操纵染色体多个区域的方法。在这里,我们提供了多样化该方法用途的新资源。我们还提供了一种在完成操作后从细胞中去除所需遗传工具的技术,从而建立了“干净”的衍生细胞。最后,我们通过生成文献中报道的最大染色体缺失之一来展示该技术的全部能力。总的来说,这些新工具将广泛有益于 社区,特别是推进 作为模型系统的发展。