Qian Yuanyuan, Wang Xiting, Cai Lulu, Han Jiangxue, Huang Zhu, Lou Yahui, Zhang Bingyue, Wang Yanjie, Sun Xiaoning, Zhang Yan, Zhu Aisong
Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
J Pharm Anal. 2024 Apr;14(4):100914. doi: 10.1016/j.jpha.2023.12.004. Epub 2023 Dec 9.
Recent trends suggest that Chinese herbal medicine formulas (CHM formulas) are promising treatments for complex diseases. To characterize the precise syndromes, precise diseases and precise targets of the precise targets between complex diseases and CHM formulas, we developed an artificial intelligence-based quantitative predictive algorithm (DeepTCM). DeepTCM has gone through multilevel model calibration and validation against a comprehensive set of herb and disease data so that it accurately captures the complex cellular signaling, molecular and theoretical levels of traditional Chinese medicine (TCM). As an example, our model simulated the optimal CHM formulas for the treatment of coronary heart disease (CHD) with depression, and through model sensitivity analysis, we calculated the balanced scoring of the formulas. Furthermore, we constructed a biological knowledge graph representing interactions by associating herb-target and gene-disease interactions. Finally, we experimentally confirmed the therapeutic effect and pharmacological mechanism of a novel model-predicted intervention in humans and mice. This novel multiscale model opened up a new avenue to combine "disease syndrome" and "macro micro" system modeling to facilitate translational research in CHM formulas.
近期趋势表明,中药复方有望成为治疗复杂疾病的方法。为了明确复杂疾病与中药复方之间精确的证候、精确的疾病和精确的靶点,我们开发了一种基于人工智能的定量预测算法(DeepTCM)。DeepTCM已针对一整套全面的草药和疾病数据进行了多层次模型校准和验证,从而能够准确捕捉中医复杂的细胞信号传导、分子和理论层面。例如,我们的模型模拟了治疗伴有抑郁症的冠心病(CHD)的最佳中药复方,并通过模型敏感性分析计算了复方的平衡评分。此外,我们通过关联草药-靶点和基因-疾病相互作用构建了一个表示相互作用的生物知识图谱。最后,我们通过实验证实了一种新的模型预测干预措施在人和小鼠中的治疗效果及药理机制。这种新型多尺度模型为结合“病证”与“宏观微观”系统建模开辟了一条新途径,以促进中药复方的转化研究。
JMIR Form Res. 2023-4-21
Biomed Environ Sci. 2022-7-20
Eur J Med Chem. 2022-7-5
Cancer Discov. 2022-6-2
Proc Natl Acad Sci U S A. 2021-9-28