Computer Science and Artificial Intelligence Laboratory (CSAIL), Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
School of Electrical & Electronics Engineering, Fiji National University, Suva, Fiji.
Med Biol Eng Comput. 2024 Sep;62(9):2769-2783. doi: 10.1007/s11517-024-03096-x. Epub 2024 May 3.
Neurodegenerative diseases often exhibit a strong link with sleep disruption, highlighting the importance of effective sleep stage monitoring. In this light, automatic sleep stage classification (ASSC) plays a pivotal role, now more streamlined than ever due to the advancements in deep learning (DL). However, the opaque nature of DL models can be a barrier in their clinical adoption, due to trust concerns among medical practitioners. To bridge this gap, we introduce SleepBoost, a transparent multi-level tree-based ensemble model specifically designed for ASSC. Our approach includes a crafted feature engineering block (FEB) that extracts 41 time and frequency domain features, out of which 23 are selected based on their high mutual information score (> 0.23). Uniquely, SleepBoost integrates three fundamental linear models into a cohesive multi-level tree structure, further enhanced by a novel reward-based adaptive weight allocation mechanism. Tested on the Sleep-EDF-20 dataset, SleepBoost demonstrates superior performance with an accuracy of 86.3%, F1-score of 80.9%, and Cohen kappa score of 0.807, outperforming leading DL models in ASSC. An ablation study underscores the critical role of our selective feature extraction in enhancing model accuracy and interpretability, crucial for clinical settings. This innovative approach not only offers a more transparent alternative to traditional DL models but also extends potential implications for monitoring and understanding sleep patterns in the context of neurodegenerative disorders. The open-source availability of SleepBoost's implementation at https://github.com/akibzaman/SleepBoost can further facilitate its accessibility and potential for widespread clinical adoption.
神经退行性疾病通常与睡眠中断密切相关,这凸显了有效睡眠阶段监测的重要性。在这方面,自动睡眠阶段分类(ASSC)发挥着关键作用,由于深度学习(DL)的进步,现在比以往任何时候都更加流畅。然而,由于医疗从业者对信任的担忧,DL 模型的不透明性质可能成为其临床应用的障碍。为了弥合这一差距,我们引入了 SleepBoost,这是一种专为 ASSC 设计的透明多层次基于树的集成模型。我们的方法包括一个精心制作的特征工程块(FEB),该块提取了 41 个时间和频域特征,其中 23 个特征是根据其高互信息评分(>0.23)选择的。SleepBoost 的独特之处在于将三个基本线性模型集成到一个有凝聚力的多层次树结构中,通过一种新颖的基于奖励的自适应权重分配机制进一步增强。在 Sleep-EDF-20 数据集上进行测试,SleepBoost 表现出卓越的性能,准确率为 86.3%,F1 得分为 80.9%,科恩kappa 得分为 0.807,在 ASSC 中优于领先的 DL 模型。一项消融研究强调了我们选择性特征提取在提高模型准确性和可解释性方面的关键作用,这对于临床环境至关重要。这种创新方法不仅为传统的 DL 模型提供了更透明的替代方案,而且还扩展了在神经退行性疾病背景下监测和理解睡眠模式的潜在影响。SleepBoost 的实现可在 https://github.com/akibzaman/SleepBoost 上获得,这进一步促进了其可访问性和广泛的临床应用潜力。