Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile.
Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown, NSW 2050, Australia; Department of Neuroscience, Universidad de Chile, Independencia 1027, Independencia, Santiago, Chile.
Neuroimage. 2024 Jun;293:120633. doi: 10.1016/j.neuroimage.2024.120633. Epub 2024 May 3.
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
视频游戏是研究训练和神经可塑性对大脑影响的宝贵工具。然而,与可塑性相关的大脑结构变化及其对大脑动力学的影响的潜在机制尚不清楚。在这里,我们使用半经验的全脑模型来研究与视频游戏专业知识相关的结构神经可塑性机制。我们假设,视频游戏专业知识与神经可塑性介导的结构连接变化有关,这些变化表现在中尺度水平上,导致功能网络拓扑结构更加分离。为了验证这一假设,我们结合了星际争霸 II 视频游戏玩家(VGP,n=31)和非玩家(NVGP,n=31)的结构连接数据,以及来自人类连接组计划和计算模型的通用 fMRI 数据,以生成模拟 fMRI 记录。在静息状态和外部刺激期间,对模拟数据进行图论分析。模拟数据的图论分析表明,VGP 的模拟功能连接具有中尺度整合特征,额、顶和枕叶脑区的局部连接增加。在结构连接水平上进行的相同分析显示,VGP 和 NVGP 之间没有差异。在 VGP 中增加其连接强度的区域已知涉及认知过程,例如注意力、推理和推断,这些过程对任务表现至关重要。计算机模拟刺激表明,VGP 和 NVGP 之间的 FC 差异出现在嘈杂的环境中,特别是当刺激的嘈杂水平增加时。这表明 VGP 的连接组可能有助于从刺激中过滤噪声。这些结构改变驱动了具有游戏专业知识的个体中观察到的中尺度功能变化。总的来说,我们的工作揭示了视频游戏体验引发的结构神经可塑性的潜在机制。