Suppr超能文献

评估 ChatGPT 与人类研究人员在系统评价中识别与改善缺血性中风患者药物依从性相关的移动医疗干预措施的研究时的有效性:比较分析。

Assessing the Efficacy of ChatGPT Versus Human Researchers in Identifying Relevant Studies on mHealth Interventions for Improving Medication Adherence in Patients With Ischemic Stroke When Conducting Systematic Reviews: Comparative Analysis.

机构信息

Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok, Thailand.

Jack, Joseph and Morton Mandel School of Applied Social Sciences, Case Western Reserve University, Cleveland, OH, United States.

出版信息

JMIR Mhealth Uhealth. 2024 May 6;12:e51526. doi: 10.2196/51526.

Abstract

BACKGROUND

ChatGPT by OpenAI emerged as a potential tool for researchers, aiding in various aspects of research. One such application was the identification of relevant studies in systematic reviews. However, a comprehensive comparison of the efficacy of relevant study identification between human researchers and ChatGPT has not been conducted.

OBJECTIVE

This study aims to compare the efficacy of ChatGPT and human researchers in identifying relevant studies on medication adherence improvement using mobile health interventions in patients with ischemic stroke during systematic reviews.

METHODS

This study used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Four electronic databases, including CINAHL Plus with Full Text, Web of Science, PubMed, and MEDLINE, were searched to identify articles published from inception until 2023 using search terms based on MeSH (Medical Subject Headings) terms generated by human researchers versus ChatGPT. The authors independently screened the titles, abstracts, and full text of the studies identified through separate searches conducted by human researchers and ChatGPT. The comparison encompassed several aspects, including the ability to retrieve relevant studies, accuracy, efficiency, limitations, and challenges associated with each method.

RESULTS

A total of 6 articles identified through search terms generated by human researchers were included in the final analysis, of which 4 (67%) reported improvements in medication adherence after the intervention. However, 33% (2/6) of the included studies did not clearly state whether medication adherence improved after the intervention. A total of 10 studies were included based on search terms generated by ChatGPT, of which 6 (60%) overlapped with studies identified by human researchers. Regarding the impact of mobile health interventions on medication adherence, most included studies (8/10, 80%) based on search terms generated by ChatGPT reported improvements in medication adherence after the intervention. However, 20% (2/10) of the studies did not clearly state whether medication adherence improved after the intervention. The precision in accurately identifying relevant studies was higher in human researchers (0.86) than in ChatGPT (0.77). This is consistent with the percentage of relevance, where human researchers (9.8%) demonstrated a higher percentage of relevance than ChatGPT (3%). However, when considering the time required for both humans and ChatGPT to identify relevant studies, ChatGPT substantially outperformed human researchers as it took less time to identify relevant studies.

CONCLUSIONS

Our comparative analysis highlighted the strengths and limitations of both approaches. Ultimately, the choice between human researchers and ChatGPT depends on the specific requirements and objectives of each review, but the collaborative synergy of both approaches holds the potential to advance evidence-based research and decision-making in the health care field.

摘要

背景

OpenAI 的 ChatGPT 作为研究人员的潜在工具出现,在研究的各个方面提供帮助。其中一个应用是在系统评价中识别相关研究。然而,人类研究人员和 ChatGPT 在识别与使用移动健康干预措施改善药物依从性相关的研究方面的效果尚未进行全面比较。

目的

本研究旨在比较 ChatGPT 和人类研究人员在系统评价中识别与使用移动健康干预措施改善缺血性中风患者药物依从性相关研究的效果。

方法

本研究使用 PRISMA(系统评价和荟萃分析的首选报告项目)指南。使用基于人类研究人员和 ChatGPT 生成的 MeSH(医学主题词)术语的搜索词,在 CINAHL Plus with Full Text、Web of Science、PubMed 和 MEDLINE 四个电子数据库中进行搜索,以确定从开始到 2023 年发表的文章。作者独立筛选了由人类研究人员和 ChatGPT 分别进行的单独搜索确定的研究的标题、摘要和全文。比较包括检索相关研究的能力、准确性、效率、局限性以及每种方法相关的挑战等方面。

结果

根据人类研究人员生成的搜索词共确定了 6 篇文章纳入最终分析,其中 4 篇(67%)报告干预后药物依从性有所改善。然而,纳入的研究中有 33%(2/6)并未明确说明干预后药物依从性是否有所改善。根据 ChatGPT 生成的搜索词共纳入了 10 篇研究,其中 6 篇(60%)与人类研究人员确定的研究重叠。关于移动健康干预措施对药物依从性的影响,基于 ChatGPT 生成的搜索词纳入的大多数研究(8/10,80%)报告干预后药物依从性有所改善。然而,20%(2/10)的研究并未明确说明干预后药物依从性是否有所改善。准确识别相关研究的精度在人类研究人员(0.86)中高于 ChatGPT(0.77)。这与相关性百分比一致,其中人类研究人员(9.8%)的相关性百分比高于 ChatGPT(3%)。然而,当考虑人类和 ChatGPT 识别相关研究所需的时间时,ChatGPT 明显优于人类研究人员,因为它花费的时间更少。

结论

我们的对比分析突出了这两种方法的优缺点。最终,在人类研究人员和 ChatGPT 之间进行选择取决于每次审查的具体要求和目标,但两者的协同作用有可能推进医疗保健领域的循证研究和决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a8/11106699/9a2501cb0656/mhealth_v12i1e51526_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验