Kirmani Ahmad R, Roe Emily F, Stafford Christopher M, Richter Lee J
Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA.
Mater Adv. 2020;1(2). doi: 10.1039/d0ma00072h.
Metal oxide (MO) thin-film transistors (TFTs) are expected to enable low-cost flexible and printed electronics, given their excellent charge transport, low processing temperatures and solution processability. However, achieving adequate mobility when processed scalably at low temperatures compatible with plastic electronics is a challenge. Here, we explore process-structure-transport relationships in blade-coated indium oxide (InO) TFTs via both sol-gel and combustion chemistries. We find that the sol-gel chemistry enables n-type TFTs when annealed at 200 °C to 225 °C with noticeable electron mobility ((3.4 ± 1.3) cmVs) yet minimal InO crystallinity and surprisingly low levels of the metal-oxygen-metal (M-O-M) lattice content (≈46 %). Increased annealing temperatures result in the appearance of nanocrystalline domains and an increase in M-O-M content to ≈70 %, without any further increase in mobility. An actetylacetone combustion-assisted ink lowers the external thermal budget required for InO crystallization but bypasses the electronically-active amorphous state and underperforms the sol-gel ink at low temperatures. Grain boundary formation and nanocrystalline inclusions in these films due to rapid combustion-assisted crystallization are suggested to be the likely origin behind the significantly compromised charge transport at low-temperatures. Overall, this study emphasizes the need to understand the complex interplay between local order (nanocrystallinity) and connectivity (grain boundary, amorphous phases) when optimizing low-temperature processed MO thin films.
金属氧化物(MO)薄膜晶体管(TFT)因其出色的电荷传输性能、较低的加工温度和溶液可加工性,有望实现低成本的柔性和印刷电子产品。然而,在与塑料电子产品兼容的低温下进行可扩展加工时,实现足够的迁移率是一项挑战。在这里,我们通过溶胶-凝胶和燃烧化学方法探索了刮刀涂布氧化铟(InO)TFT中的工艺-结构-传输关系。我们发现,溶胶-凝胶化学方法在200°C至225°C退火时能够实现n型TFT,具有显著的电子迁移率((3.4±1.3) cm²V⁻¹s⁻¹),但InO结晶度最低,金属-氧-金属(M-O-M)晶格含量惊人地低(≈46%)。退火温度升高会导致纳米晶域的出现,M-O-M含量增加到≈70%,而迁移率没有进一步增加。乙酰丙酮燃烧辅助墨水降低了InO结晶所需的外部热预算,但绕过了电子活性非晶态,在低温下性能不如溶胶-凝胶墨水。由于快速燃烧辅助结晶,这些薄膜中形成的晶界和纳米晶夹杂物被认为是低温下电荷传输显著受损的可能原因。总体而言,这项研究强调了在优化低温加工的MO薄膜时,理解局部有序(纳米结晶度)和连通性(晶界、非晶相)之间复杂相互作用的必要性。