Suppr超能文献

扩散决策模型在神经学上的不合理性对于认知心理测量学而言无关紧要,但奥恩斯坦-乌伦贝克模型更胜一筹。

The neural implausibility of the diffusion decision model doesn't matter for cognitive psychometrics, but the Ornstein-Uhlenbeck model is better.

作者信息

Wang Jia-Shun, Donkin Christopher

机构信息

Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.

Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Psychon Bull Rev. 2024 Dec;31(6):2724-2736. doi: 10.3758/s13423-024-02520-5. Epub 2024 May 14.

Abstract

In cognitive psychometrics, the parameters of cognitive models are used as measurements of the processes underlying observed behavior. In decision making, the diffusion decision model (DDM) is by far the most commonly used cognitive psychometric tool. One concern when using this model is that more recent theoretical accounts of decision-making place more emphasis on neural plausibility, and thus incorporate many assumptions not found in the DDM. One such model is the Ising Decision Maker (IDM), which builds from the assumption that two pools of neurons with self-excitation and mutual inhibition receive perceptual input from external excitatory fields. In this study, we investigate whether the lack of such mechanisms in the DDM compromises its ability to measure the processes it does purport to measure. We cross-fit the DDM and IDM, and find that the conclusions of DDM would be mostly consistent with those from an analysis using a more neurally plausible model. We also show that the Ornstein-Uhlenbeck Model (OUM) model, a variant of the DDM that includes the potential for leakage (or self-excitation), reaches similar conclusions to the DDM regarding the assumptions they share, while also sharing an interpretation with the IDM in terms of self-excitation (but not leakage). Since the OUM is relatively easy to fit to data, while being able to capture more neurally plausible mechanisms, we propose that it be considered an alternative cognitive psychometric tool to the DDM.

摘要

在认知心理测量学中,认知模型的参数被用作对观察到的行为背后的过程的度量。在决策过程中,扩散决策模型(DDM)是目前最常用的认知心理测量工具。使用该模型时的一个担忧是,最近的决策理论更强调神经合理性,因此纳入了许多在DDM中未发现的假设。一种这样的模型是伊辛决策者(IDM),它基于这样的假设构建:具有自激发和相互抑制作用的两组神经元接收来自外部兴奋场的感知输入。在本研究中,我们调查了DDM中缺乏此类机制是否会损害其测量它声称要测量的过程的能力。我们对DDM和IDM进行交叉拟合,发现DDM的结论大多与使用更具神经合理性的模型进行分析得出的结论一致。我们还表明,奥恩斯坦 - 乌伦贝克模型(OUM),即DDM的一个变体,它包含了泄漏(或自激发)的可能性,在它们共有的假设方面与DDM得出了相似的结论,同时在自激发方面(但不是泄漏方面)与IDM有共同的解释。由于OUM相对容易拟合数据,同时能够捕捉更多具有神经合理性的机制,我们建议将其视为DDM的一种替代认知心理测量工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c6d/11680627/174ba35300ad/13423_2024_2520_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验