Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China.
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Sci Adv. 2024 Sep 20;10(38):eado7392. doi: 10.1126/sciadv.ado7392. Epub 2024 Sep 18.
The primate hippocampus, crucial for both episodic memory and spatial navigation, remains an enigma regarding whether these functions share the same neural substrates. We investigated how identical hippocampal neurons in macaque monkeys dynamically shifted their representations between tasks. In a recognition memory task, a notable fraction of hippocampal neurons showed that rate modulation strongly correlated with recognition performance. During free navigation in an open arena, spatial view, rather than position, predominantly influenced the spatial selectivity of hippocampal neurons. Neurons selective for recognition memory displayed minimal spatial tuning, while spatially tuned neurons exhibited limited memory-related activity. These neural correlates of recognition memory and space were more pronounced in the anterior and posterior portions of the hippocampus, respectively. These opposing gradients extended further into the anterior and posterior neocortices. Overall, our findings suggest the presence of orthogonal long-axis gradients between recognition memory and spatial navigation in the hippocampal-neocortical networks of macaque monkeys.
灵长类动物的海马体对于情景记忆和空间导航都至关重要,但关于这两种功能是否共享相同的神经基础仍然是一个谜。我们研究了猕猴的海马体中的相同神经元如何在任务之间动态地改变它们的表示。在识别记忆任务中,相当一部分海马体神经元表现出率调制与识别性能强烈相关。在开放竞技场中自由导航时,空间视图而不是位置主要影响海马体神经元的空间选择性。选择性识别记忆的神经元表现出最小的空间调谐,而空间调谐的神经元表现出有限的与记忆相关的活动。这些识别记忆和空间的神经相关性在前海马体和后海马体部分更为明显。这些相反的梯度分别延伸到前和后新皮层更远的地方。总的来说,我们的发现表明,在猕猴的海马体-新皮层网络中,存在着识别记忆和空间导航之间的正交长轴梯度。