Xiamen University School of Information Science and Technology, Xiamen University Xiang'an Campus, Xiamen, Fujian, China.
Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
Technol Health Care. 2024;32(S1):555-564. doi: 10.3233/THC-248048.
BACKGROUND: Acute Liver Failure (ALF) is a critical medical condition with rapid development, often caused by viral infections, hepatotoxic drug abuse, or other severe liver diseases. Timely and accurate prediction of ALF occurrence is clinically crucial. However, predicting ALF poses challenges due to the diverse physiological differences among patients and the dynamic nature of the disease. OBJECTIVE: This study introduces a deep learning approach that combines fully connected and convolutional neural networks for effective ALF prediction. The goal is to overcome limitations of traditional machine learning methods and enhance predictive model performance and generalization. METHODS: The proposed model integrates a fully connected neural network for handling basic patient features and a convolutional neural network dedicated to capturing temporal patterns in patient data. The combination allows automatic learning of complex patterns and abstract features present in highly dynamic medical data associated with ALF. RESULTS: The model's effectiveness is demonstrated through comprehensive experiments and performance evaluations. It outperforms traditional machine learning methods, achieving 94.8% accuracy and superior generalization capabilities. CONCLUSIONS: The study highlights the potential of deep learning in ALF prediction, emphasizing the importance of considering individualized medical factors. Future research should focus on improving model robustness, addressing imbalanced data, and further exploring personalized features for enhanced predictive accuracy in real-world clinical scenarios.
背景:急性肝衰竭 (ALF) 是一种发展迅速的危急重症,常由病毒感染、滥用肝毒性药物或其他严重肝脏疾病引起。及时、准确地预测 ALF 的发生在临床上至关重要。然而,由于患者之间生理差异的多样性和疾病的动态性质,预测 ALF 具有挑战性。
目的:本研究引入了一种深度学习方法,该方法结合了全连接和卷积神经网络,用于有效预测 ALF。目标是克服传统机器学习方法的局限性,并提高预测模型的性能和泛化能力。
方法:所提出的模型集成了一个全连接神经网络,用于处理基本的患者特征,以及一个卷积神经网络,用于捕获患者数据中的时间模式。这种组合允许自动学习与 ALF 相关的高度动态医学数据中存在的复杂模式和抽象特征。
结果:通过全面的实验和性能评估,证明了该模型的有效性。它优于传统的机器学习方法,达到了 94.8%的准确率和优越的泛化能力。
结论:该研究强调了深度学习在 ALF 预测中的潜力,强调了考虑个体化医疗因素的重要性。未来的研究应侧重于提高模型的稳健性、解决数据不平衡问题,并进一步探索个性化特征,以提高在实际临床场景中的预测准确性。
Digit Health. 2024-1-17
BMC Med Imaging. 2024-5-21
BMC Bioinformatics. 2024-5-9
J Med Internet Res. 2020-9-28
Int J Med Inform. 2019-9-23
J Appl Clin Med Phys. 2024-12
J Gastroenterol Hepatol. 2021-3
Clin Kidney J. 2020-11-24