文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于全连接和卷积神经网络融合的深度学习急性肝衰竭预测方法。

A deep learning approach for acute liver failure prediction with combined fully connected and convolutional neural networks.

机构信息

Xiamen University School of Information Science and Technology, Xiamen University Xiang'an Campus, Xiamen, Fujian, China.

Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

出版信息

Technol Health Care. 2024;32(S1):555-564. doi: 10.3233/THC-248048.


DOI:10.3233/THC-248048
PMID:38759076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11191538/
Abstract

BACKGROUND: Acute Liver Failure (ALF) is a critical medical condition with rapid development, often caused by viral infections, hepatotoxic drug abuse, or other severe liver diseases. Timely and accurate prediction of ALF occurrence is clinically crucial. However, predicting ALF poses challenges due to the diverse physiological differences among patients and the dynamic nature of the disease. OBJECTIVE: This study introduces a deep learning approach that combines fully connected and convolutional neural networks for effective ALF prediction. The goal is to overcome limitations of traditional machine learning methods and enhance predictive model performance and generalization. METHODS: The proposed model integrates a fully connected neural network for handling basic patient features and a convolutional neural network dedicated to capturing temporal patterns in patient data. The combination allows automatic learning of complex patterns and abstract features present in highly dynamic medical data associated with ALF. RESULTS: The model's effectiveness is demonstrated through comprehensive experiments and performance evaluations. It outperforms traditional machine learning methods, achieving 94.8% accuracy and superior generalization capabilities. CONCLUSIONS: The study highlights the potential of deep learning in ALF prediction, emphasizing the importance of considering individualized medical factors. Future research should focus on improving model robustness, addressing imbalanced data, and further exploring personalized features for enhanced predictive accuracy in real-world clinical scenarios.

摘要

背景:急性肝衰竭 (ALF) 是一种发展迅速的危急重症,常由病毒感染、滥用肝毒性药物或其他严重肝脏疾病引起。及时、准确地预测 ALF 的发生在临床上至关重要。然而,由于患者之间生理差异的多样性和疾病的动态性质,预测 ALF 具有挑战性。

目的:本研究引入了一种深度学习方法,该方法结合了全连接和卷积神经网络,用于有效预测 ALF。目标是克服传统机器学习方法的局限性,并提高预测模型的性能和泛化能力。

方法:所提出的模型集成了一个全连接神经网络,用于处理基本的患者特征,以及一个卷积神经网络,用于捕获患者数据中的时间模式。这种组合允许自动学习与 ALF 相关的高度动态医学数据中存在的复杂模式和抽象特征。

结果:通过全面的实验和性能评估,证明了该模型的有效性。它优于传统的机器学习方法,达到了 94.8%的准确率和优越的泛化能力。

结论:该研究强调了深度学习在 ALF 预测中的潜力,强调了考虑个体化医疗因素的重要性。未来的研究应侧重于提高模型的稳健性、解决数据不平衡问题,并进一步探索个性化特征,以提高在实际临床场景中的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/0586db62fb2f/thc-32-thc248048-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/36060e9ab112/thc-32-thc248048-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/3634da009227/thc-32-thc248048-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/617d0f9d032c/thc-32-thc248048-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/75c9bb95adc7/thc-32-thc248048-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/0586db62fb2f/thc-32-thc248048-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/36060e9ab112/thc-32-thc248048-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/3634da009227/thc-32-thc248048-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/617d0f9d032c/thc-32-thc248048-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/75c9bb95adc7/thc-32-thc248048-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/11191538/0586db62fb2f/thc-32-thc248048-g005.jpg

相似文献

[1]
A deep learning approach for acute liver failure prediction with combined fully connected and convolutional neural networks.

Technol Health Care. 2024

[2]
Predictive Analytics for Care and Management of Patients With Acute Diseases: Deep Learning-Based Method to Predict Crucial Complication Phenotypes.

J Med Internet Res. 2021-2-12

[3]
Deep convolutional neural network and IoT technology for healthcare.

Digit Health. 2024-1-17

[4]
Refining neural network algorithms for accurate brain tumor classification in MRI imagery.

BMC Med Imaging. 2024-5-21

[5]
Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.

BMC Bioinformatics. 2024-5-9

[6]
Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.

J Biomed Inform. 2020-11

[7]
Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT.

Med Phys. 2018-9-10

[8]
Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach.

J Med Internet Res. 2020-9-28

[9]
Individualized prediction of depressive disorder in the elderly: A multitask deep learning approach.

Int J Med Inform. 2019-9-23

[10]
Deep learning for blood glucose level prediction: How well do models generalize across different data sets?

PLoS One. 2024

引用本文的文献

[1]
A review of deep learning approaches for multimodal image segmentation of liver cancer.

J Appl Clin Med Phys. 2024-12

本文引用的文献

[1]
Enhanced Preprocessing Approach Using Ensemble Machine Learning Algorithms for Detecting Liver Disease.

Biomedicines. 2023-2-16

[2]
State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review.

JMIR Med Inform. 2022-3-3

[3]
North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Diagnosis and Management of Pediatric Acute Liver Failure.

J Pediatr Gastroenterol Nutr. 2022-1-1

[4]
Performance of preclinical models in predicting drug-induced liver injury in humans: a systematic review.

Sci Rep. 2021-3-18

[5]
Artificial intelligence in precision medicine in hepatology.

J Gastroenterol Hepatol. 2021-3

[6]
External validation of prognostic models: what, why, how, when and where?

Clin Kidney J. 2020-11-24

[7]
Acute-on-chronic liver failure: Definitions, pathophysiology and principles of treatment.

JHEP Rep. 2020-9-2

[8]
Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice.

Schizophr Bull. 2021-3-16

[9]
Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma.

Surgery. 2020-8-11

[10]
Clinical features and evolution of bacterial infection-related acute-on-chronic liver failure.

J Hepatol. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索