Suppr超能文献

分析不同恐高程度的年轻成年人的脑电图模式:一项虚拟现实研究。

Analyzing EEG patterns in young adults exposed to different acrophobia levels: a VR study.

作者信息

Russo Samuele, Tibermacine Imad Eddine, Tibermacine Ahmed, Chebana Dounia, Nahili Abdelhakim, Starczewscki Janusz, Napoli Christian

机构信息

Department of Psychology, Sapienza University of Rome, Rome, Italy.

Department of Computer, Automation and Management Engineering, Sapienza University of Rome, Rome, Italy.

出版信息

Front Hum Neurosci. 2024 May 6;18:1348154. doi: 10.3389/fnhum.2024.1348154. eCollection 2024.

Abstract

INTRODUCTION

The primary objective of this research is to examine acrophobia, a widely prevalent and highly severe phobia characterized by an overwhelming dread of heights, which has a substantial impact on a significant proportion of individuals worldwide. The objective of our study was to develop a real-time and precise instrument for evaluating levels of acrophobia by utilizing electroencephalogram (EEG) signals.

METHODS

EEG data was gathered from a sample of 18 individuals diagnosed with acrophobia. Subsequently, a range of classifiers, namely Support Vector Classifier (SVC), K-nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Adaboost, Linear Discriminant Analysis (LDA), Convolutional Neural Network (CNN), and Artificial Neural Network (ANN), were employed in the analysis. These methodologies encompass both machine learning (ML) and deep learning (DL) techniques.

RESULTS

The Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) models demonstrated notable efficacy. The Convolutional Neural Network (CNN) model demonstrated a training accuracy of 96% and a testing accuracy of 99%, whereas the Artificial Neural Network (ANN) model attained a training accuracy of 96% and a testing accuracy of 97%. The findings of this study highlight the effectiveness of the proposed methodology in accurately categorizing real-time degrees of acrophobia using EEG data. Further investigation using correlation matrices for each level of acrophobia showed substantial EEG frequency band connections. Beta and Gamma mean values correlated strongly, suggesting cognitive arousal and acrophobic involvement could synchronize activity. Beta and Gamma activity correlated strongly with acrophobia, especially at higher levels.

DISCUSSION

The results underscore the promise of this innovative approach as a dependable and sophisticated method for evaluating acrophobia. This methodology has the potential to make a substantial contribution toward the comprehension and assessment of acrophobia, hence facilitating the development of more individualized and efficacious therapeutic interventions.

摘要

引言

本研究的主要目的是考察恐高症,这是一种广泛流行且极为严重的恐惧症,其特征是对高度有着压倒性的恐惧,在全球相当一部分人群中产生了重大影响。我们研究的目标是利用脑电图(EEG)信号开发一种实时且精确的工具来评估恐高症的程度。

方法

从18名被诊断患有恐高症的个体样本中收集EEG数据。随后,一系列分类器,即支持向量分类器(SVC)、K近邻(KNN)、随机森林(RF)、决策树(DT)、Adaboost、线性判别分析(LDA)、卷积神经网络(CNN)和人工神经网络(ANN),被用于分析。这些方法涵盖了机器学习(ML)和深度学习(DL)技术。

结果

卷积神经网络(CNN)和人工神经网络(ANN)模型显示出显著的效果。卷积神经网络(CNN)模型的训练准确率为96%,测试准确率为99%,而人工神经网络(ANN)模型的训练准确率为96%,测试准确率为97%。本研究结果突出了所提出方法在利用EEG数据准确分类实时恐高症程度方面的有效性。对每个恐高症水平使用相关矩阵进行的进一步研究表明,EEG频段之间存在大量连接。β和γ均值相关性很强,表明认知唤醒和恐高症参与可能使活动同步。β和γ活动与恐高症密切相关,尤其是在较高水平时。

讨论

结果强调了这种创新方法作为一种可靠且精密的评估恐高症方法的前景。这种方法有潜力对恐高症的理解和评估做出重大贡献,从而促进更个性化和有效的治疗干预措施的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验