Suppr超能文献

分子氢与氧气、一氧化氮和一氧化碳竞争结合血红素的第一性原理研究。

First-principles study of molecular hydrogen binding to heme in competition with O, NO and CO.

作者信息

Ri Yun-Kyong, Kim Song-Ae, Kye Yun-Hyok, Jong Yu-Chol, Kang Myong-Su, Yu Chol-Jun

机构信息

Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea

Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea.

出版信息

RSC Adv. 2024 May 22;14(24):16629-16638. doi: 10.1039/d4ra02091j.

Abstract

Molecular hydrogen shows antioxidant activity and distinct efficacy towards vascular diseases, but the understanding of this is not yet satisfactory at the atomic level. In this work, we study the binding properties of H to the heme group in relation with other diatomic molecules (DMs), including O, NO and CO, and their displacement reactions, using first-principles calculations. We carry out molecular modeling of the heme group, using iron-porphyrin with the imidazole ligand, , FePIm, and smaller models of Fe(CHN)NH with = 3 and 1, and of molecular complexes of heme-DM and -H. Through analysis of optimized geometries and energetics, it is found that the order of binding strength of DMs or H to the Fe of heme is NO > O > CO > H > H for FePIm-based systems, while it is H > O > NO > CO > H for model-based systems. We calculate the activation energies for displacement reactions of H and H by other DMs, revealing that the H displacements occur spontaneously while the H displacements require a large amount of energy. Finally, our calculations corroborate that the rate constants increase with increasing temperature according to the Arrhenius relation.

摘要

分子氢具有抗氧化活性,对血管疾病有显著疗效,但在原子水平上对此的理解仍不尽人意。在这项工作中,我们使用第一性原理计算研究了H与血红素基团的结合特性以及与其他双原子分子(DMs)(包括O、NO和CO)的关系及其置换反应。我们对血红素基团进行分子建模,使用带有咪唑配体的铁卟啉(FePIm),以及较小的Fe(CHN)NH模型(= 3和1),还有血红素-DM和-H的分子复合物模型。通过对优化几何结构和能量学的分析,发现对于基于FePIm的体系,DMs或H与血红素Fe的结合强度顺序为NO > O > CO > H > H,而对于基于模型的体系则为H > O > NO > CO > H。我们计算了其他DMs置换H和H的反应活化能,结果表明H的置换反应自发发生,而H的置换反应需要大量能量。最后,我们的计算证实速率常数根据阿伦尼乌斯关系随温度升高而增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验