文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

海洋藻类介导的生物合成银纳米粒子的抗真菌活性:涂层番茄果实以防止 青霉病的体内外研究

Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against Blue Mold.

机构信息

Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia.

Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.

出版信息

Mar Drugs. 2024 May 16;22(5):225. doi: 10.3390/md22050225.


DOI:10.3390/md22050225
PMID:38786616
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11122932/
Abstract

In an attempt to reduce such decay induced by pathogenic causes, several studies investigated the effectiveness of nanoparticles (NPs) that play a vital role in saving food products, especially fruits. Current research delves into biogenic silver nanoparticles (using marine alga (Tt/Ag-NPs) and their characterization using FT-IR, TEM, EDS, and zeta potential. Some pathogenic fungi, which cause fruit spoilage, were isolated. We studied the impact of using Tt/Ag-NPs to protect against isolated fungi in vitro, and the influence of Tt/Ag-NPs as a coating of tomato fruit to protect against blue mold caused by (OR770486) over 17 days of storage time. Five treatments were examined: T1, healthy fruits were used as the positive control; T2, healthy fruits sprayed with Tt/Ag-NPs; T3, fruits infected with followed by coating with Tt/Ag-NPs (pre-coating); T4, fruits coated with Tt/Ag-NPs followed by infection by (post-coating); and T5, the negative control, fruits infected by . The results displayed that Tt/Ag-NPs are crystalline, spherical in shape, with size ranges between 14.5 and 39.85 nm, and negative charges. Different concentrations of Tt/Ag-NPs possessed antifungal activities against , , , , and . After two days of tomatoes being infected with , 55% of the fruits were spoilage. The tomato fruit coated with Tt/Ag-NPs delayed weight loss, increased titratable acidity (TA%), antioxidant%, and polyphenol contents, and decreased pH and total soluble solids (TSSs). There were no significant results between pre-coating and post-coating except in phenol contents increased in pre-coating. A particular focus is placed on the novel and promising approach of utilizing nanoparticles to combat foodborne pathogens and preserve commodities, with a spotlight on the application of nanoparticles in safeguarding tomatoes from decay.

摘要

为了减少这种由致病原因引起的腐烂,一些研究调查了纳米颗粒(NPs)的有效性,这些颗粒在保存食品,特别是水果方面起着至关重要的作用。目前的研究深入探讨了生物源银纳米颗粒(使用海洋藻类(Tt/Ag-NPs)并使用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)、能量色散 X 射线光谱(EDS)和zeta 电位对其进行表征。分离出了一些导致水果腐烂的致病真菌。我们研究了使用 Tt/Ag-NPs 来防止体外分离真菌的影响,以及 Tt/Ag-NPs 作为番茄果实涂层以防止由 (OR770486)引起的蓝霉的影响,在 17 天的储存时间内。检查了五种处理方法:T1,使用健康水果作为阳性对照;T2,用 Tt/Ag-NPs 喷洒的健康水果;T3,用 感染的水果,然后用 Tt/Ag-NPs 涂层(预涂层);T4,用 Tt/Ag-NPs 涂层的水果,然后用 感染(后涂层);T5,阴性对照,用 感染的水果。结果显示,Tt/Ag-NPs 是结晶的,呈球形,尺寸范围在 14.5 和 39.85nm 之间,带负电荷。不同浓度的 Tt/Ag-NPs 对 、 、 、 、 具有抗真菌活性。感染番茄两天后,有 55%的果实腐烂。用 Tt/Ag-NPs 涂层的番茄果实延迟了失重,增加了可滴定酸度(TA%)、抗氧化%和多酚含量,降低了 pH 值和总可溶性固形物(TSSs)。预涂层和后涂层之间没有显著差异,除了预涂层中酚含量增加。特别关注的是利用纳米颗粒来对抗食源性病原体和保护商品的新颖而有前途的方法,重点是纳米颗粒在保护番茄免受腐烂方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/69afaa4979a7/marinedrugs-22-00225-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/34b2b995947e/marinedrugs-22-00225-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/49b1cc2808ec/marinedrugs-22-00225-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/049b3b627d37/marinedrugs-22-00225-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/1f8f1d34ef70/marinedrugs-22-00225-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/57f04eaf6105/marinedrugs-22-00225-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/24914654f138/marinedrugs-22-00225-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/5bfb4403f0aa/marinedrugs-22-00225-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/24d09003e3a2/marinedrugs-22-00225-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/257d559fde23/marinedrugs-22-00225-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/b708446b0517/marinedrugs-22-00225-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/3bc64fa805f2/marinedrugs-22-00225-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/9f664e5796aa/marinedrugs-22-00225-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/7c9ed75eb611/marinedrugs-22-00225-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/69afaa4979a7/marinedrugs-22-00225-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/34b2b995947e/marinedrugs-22-00225-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/49b1cc2808ec/marinedrugs-22-00225-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/049b3b627d37/marinedrugs-22-00225-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/1f8f1d34ef70/marinedrugs-22-00225-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/57f04eaf6105/marinedrugs-22-00225-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/24914654f138/marinedrugs-22-00225-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/5bfb4403f0aa/marinedrugs-22-00225-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/24d09003e3a2/marinedrugs-22-00225-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/257d559fde23/marinedrugs-22-00225-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/b708446b0517/marinedrugs-22-00225-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/3bc64fa805f2/marinedrugs-22-00225-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/9f664e5796aa/marinedrugs-22-00225-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/7c9ed75eb611/marinedrugs-22-00225-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/11122932/69afaa4979a7/marinedrugs-22-00225-g014a.jpg

相似文献

[1]
Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against Blue Mold.

Mar Drugs. 2024-5-16

[2]
The potent effect of selenium nanoparticles: insight into the antifungal activity and preservation of postharvest strawberries from gray mold diseases.

J Sci Food Agric. 2024-8-30

[3]
Molybdenum disulfide nanosheets loaded with chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo.

Mater Sci Eng C Mater Biol Appl. 2018-12-18

[4]
Green-fabricated silver nanoparticles from Quercus incana leaf extract to control the early blight of tomatoes caused by Alternaria solani.

BMC Plant Biol. 2024-4-19

[5]
Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit.

Int J Food Microbiol. 2015-8-18

[6]
Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp.

Biol Trace Elem Res. 2020-6

[7]
Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage.

J Food Sci. 2011-3-14

[8]
Clove Essential Oil as an Alternative Approach to Control Postharvest Blue Mold Caused by in Citrus Fruit.

Biomolecules. 2019-5-21

[9]
Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga : Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation.

Molecules. 2023-8-29

[10]
Bimetallic nanoparticles and biochar produced by shell and their effect against tomato pathogenic fungi.

PeerJ. 2024

引用本文的文献

[1]
Current status and future trends of eco-friendly management of postharvest fungal decays in tomato fruit.

NPJ Sci Food. 2025-6-18

[2]
Marine-Derived Compounds Combined with Nanoparticles: A Focus on the Biomedical and Pharmaceutical Sector.

Mar Drugs. 2025-5-13

[3]
Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications.

Nanomaterials (Basel). 2024-10-10

[4]
Silver Nanocomposites with Enhanced Shelf-Life for Fruit and Vegetable Preservation: Mechanisms, Advances, and Prospects.

Nanomaterials (Basel). 2024-7-24

[5]
Alginate Extracted from Loaded in Selenium Nanoparticles: Insight on Characterization, Antifungal and Anticancer Activities.

Polymers (Basel). 2024-7-19

本文引用的文献

[1]
Assessment of Silver Nanoparticles Derived from Brown Algae Insight into Antioxidants, Anticancer, Antibacterial and Hepatoprotective Effect.

Mar Drugs. 2024-3-28

[2]
The potent effect of selenium nanoparticles: insight into the antifungal activity and preservation of postharvest strawberries from gray mold diseases.

J Sci Food Agric. 2024-8-30

[3]
Post-harvest biocontrol of Fusarium infection in tomato fruits using bio-mediated selenium nanoparticles.

AMB Express. 2023-10-23

[4]
Structural characterization, antioxidant and anti-uropathogenic potential of biogenic silver nanoparticles using brown seaweed .

Front Microbiol. 2023-9-1

[5]
Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga : Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation.

Molecules. 2023-8-29

[6]
Effect of Pre-Storage CO Treatment and Modified Atmosphere Packaging on Sweet Pepper Chilling Injury.

Plants (Basel). 2023-2-3

[7]
Preparation and Properties of Environmentally Friendly Marine Antifouling Coatings Based on a Collaborative Strategy.

Langmuir. 2022-5-31

[8]
Statistical optimization of photo-induced biofabrication of silver nanoparticles using the cell extract of : insight on characterization and antioxidant potentiality.

RSC Adv. 2020-12-15

[9]
Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview.

J Food Sci. 2022-6

[10]
The Efficacy of Green Synthesized Nanosilver in Reducing the Incidence of Post-Harvest Apple Fruit Brown Rot.

J Fungi (Basel). 2021-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索