Suppr超能文献

具有界面交换耦合的多层自旋转移矩磁阻随机存取存储器的高级建模与仿真

Advanced Modeling and Simulation of Multilayer Spin-Transfer Torque Magnetoresistive Random Access Memory with Interface Exchange Coupling.

作者信息

Bendra Mario, Orio Roberto Lacerda de, Selberherr Siegfried, Goes Wolfgang, Sverdlov Viktor

机构信息

Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at the Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria.

Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria.

出版信息

Micromachines (Basel). 2024 Apr 26;15(5):568. doi: 10.3390/mi15050568.

Abstract

In advancing the study of magnetization dynamics in STT-MRAM devices, we employ the spin drift-diffusion model to address the back-hopping effect. This issue manifests as unwanted switching either in the composite free layer or in the reference layer in synthetic antiferromagnets-a challenge that becomes more pronounced with device miniaturization. Although this miniaturization aims to enhance memory density, it inadvertently compromises data integrity. Parallel to this examination, our investigation of the interface exchange coupling within multilayer structures unveils critical insights into the efficacy and dependability of spintronic devices. We particularly scrutinize how exchange coupling, mediated by non-magnetic layers, influences the magnetic interplay between adjacent ferromagnetic layers, thereby affecting their magnetic stability and domain wall movements. This investigation is crucial for understanding the switching behavior in multi-layered structures. Our integrated methodology, which uses both charge and spin currents, demonstrates a comprehensive understanding of MRAM dynamics. It emphasizes the strategic optimization of exchange coupling to improve the performance of multi-layered spintronic devices. Such enhancements are anticipated to encourage improvements in data retention and the write/read speeds of memory devices. This research, thus, marks a significant leap forward in the refinement of high-capacity, high-performance memory technologies.

摘要

在推进对自旋转移力矩磁随机存取存储器(STT-MRAM)器件中磁化动力学的研究时,我们采用自旋漂移扩散模型来解决反向跳跃效应问题。这个问题表现为合成反铁磁体中复合自由层或参考层出现不必要的切换——随着器件小型化,这一挑战变得更加突出。尽管这种小型化旨在提高存储密度,但却无意中损害了数据完整性。在进行这项研究的同时,我们对多层结构中的界面交换耦合进行的调查揭示了有关自旋电子器件的功效和可靠性的关键见解。我们特别仔细研究了由非磁性层介导的交换耦合如何影响相邻铁磁层之间的磁相互作用,从而影响它们的磁稳定性和畴壁运动。这项研究对于理解多层结构中的切换行为至关重要。我们使用电荷电流和自旋电流的综合方法表明对MRAM动力学有全面的理解。它强调了对交换耦合进行战略优化以提高多层自旋电子器件的性能。预计这种改进将促进存储器件的数据保持能力以及写入/读取速度的提高。因此,这项研究标志着在高容量、高性能存储技术的改进方面向前迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aab/11122916/329edf6e722e/micromachines-15-00568-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验