Iwata-Harms Jodi M, Jan Guenole, Liu Huanlong, Serrano-Guisan Santiago, Zhu Jian, Thomas Luc, Tong Ru-Ying, Sundar Vignesh, Wang Po-Kang
TDK - Headway Technologies, Inc., 463 S. Milpitas Boulevard, Milpitas, CA, 95035, USA.
Sci Rep. 2018 Sep 26;8(1):14409. doi: 10.1038/s41598-018-32641-6.
Spin-transfer-torque magnetic random access memory (STT-MRAM) is the most promising emerging non-volatile embedded memory. For most applications, a wide range of operating temperatures is required, for example -40 °C to +150 °C for automotive applications. This presents a challenge for STT-MRAM, because the magnetic anisotropy responsible for data retention decreases rapidly with temperature. In order to compensate for the loss of thermal stability at high temperature, the anisotropy of the devices must be increased. This in turn leads to larger write currents at lower temperatures, thus reducing the efficiency of the memory. Despite the importance of high-temperature performance of STT-MRAM for energy efficient design, thorough physical understanding of the key parameters driving its behavior is still lacking. Here we report on CoFeB free layers diluted with state-of-the-art non-magnetic metallic impurities. By varying the impurity material and concentration to modulate the magnetization, we demonstrate that the magnetization is the primary factor driving the temperature dependence of the anisotropy and thermal stability. We use this understanding to develop a simple model allowing for the prediction of thermal stability of STT-MRAM devices from blanket film properties, and find good agreement with direct measurements of patterned devices.
自旋转移矩磁随机存取存储器(STT-MRAM)是最具前景的新兴非易失性嵌入式存储器。对于大多数应用而言,需要较宽的工作温度范围,例如汽车应用所需的温度范围为-40°C至+150°C。这给STT-MRAM带来了挑战,因为负责数据保持的磁各向异性会随温度迅速降低。为了补偿高温下热稳定性的损失,必须提高器件的各向异性。这反过来又会导致低温下写入电流增大,从而降低存储器的效率。尽管STT-MRAM的高温性能对于节能设计很重要,但目前仍缺乏对驱动其行为的关键参数的全面物理理解。在此,我们报告了用最先进的非磁性金属杂质稀释的CoFeB自由层。通过改变杂质材料和浓度来调制磁化强度,我们证明磁化强度是驱动各向异性和热稳定性温度依赖性的主要因素。我们利用这一认识开发了一个简单模型,可根据毯状薄膜特性预测STT-MRAM器件的热稳定性,并发现与图案化器件的直接测量结果吻合良好。