Hochstoeger Tobias, Al Said Tarek, Maestre Dante, Walter Florian, Vilceanu Alexandra, Pedron Miriam, Cushion Thomas D, Snider William, Nimpf Simon, Nordmann Gregory Charles, Landler Lukas, Edelman Nathaniel, Kruppa Lennard, Dürnberger Gerhard, Mechtler Karl, Schuechner Stefan, Ogris Egon, Malkemper E Pascal, Weber Stefan, Schleicher Erik, Keays David A
Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany.
Sci Adv. 2020 Aug 12;6(33):eabb9110. doi: 10.1126/sciadv.abb9110. eCollection 2020 Aug.
The biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues. We report that clCRY4 is broadly and stably expressed within the retina but enriched at synapses in the outer plexiform layer in a repetitive manner. A proteomic survey for retinal-specific clCRY4 interactors identified molecules that are involved in receptor signaling, including glutamate receptor-interacting protein 2, which colocalizes with clCRY4. Our data support a model whereby clCRY4 acts as an ultraviolet-blue photoreceptor and/or a light-dependent magnetosensor by modulating glutamatergic synapses between horizontal cells and cones.
使动物能够检测磁场的生物物理和分子机制尚不清楚。有人提出,鸟类具有一种依赖光的磁罗盘,该罗盘依赖于隐花色素分子内自由基对的形成。通过光谱方法,我们表明鸽子隐花色素clCRY4能有效光还原,并通过一组色氨酸残基形成长寿命的自旋相关自由基对。我们报告称,clCRY4在视网膜内广泛且稳定地表达,但以重复的方式在外网状层的突触处富集。一项针对视网膜特异性clCRY4相互作用分子的蛋白质组学调查确定了参与受体信号传导的分子,包括与clCRY4共定位的谷氨酸受体相互作用蛋白2。我们的数据支持一种模型,即clCRY4通过调节水平细胞和视锥细胞之间的谷氨酸能突触,充当紫外-蓝光光感受器和/或依赖光的磁传感器。