文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

远视儿童的眼生物测量学参数及一种基于机器学习的眼轴预测模型

Ocular Biometric Components in Hyperopic Children and a Machine Learning-Based Model to Predict Axial Length.

机构信息

State University of New York College of Optometry, New York, NY, USA.

Retina Foundation of the Southwest, Dallas, TX, USA.

出版信息

Transl Vis Sci Technol. 2024 May 1;13(5):25. doi: 10.1167/tvst.13.5.25.


DOI:10.1167/tvst.13.5.25
PMID:38809529
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11146039/
Abstract

PURPOSE: The purpose of this study was to investigate the development of optical biometric components in children with hyperopia, and apply a machine-learning model to predict axial length. METHODS: Children with hyperopia (+1 diopters [D] to +10 D) in 3 age groups: 3 to 5 years (n = 74), 6 to 8 years (n = 102), and 9 to 11 years (n = 36) were included. Axial length, anterior chamber depth, lens thickness, central corneal thickness, and corneal power were measured; all participants had cycloplegic refraction within 6 months. Spherical equivalent (SEQ) was calculated. A mixed-effects model was used to compare sex and age groups and adjust for interocular correlation. A classification and regression tree (CART) analysis was used to predict axial length and compared with the linear regression. RESULTS: Mean SEQ for all 3 age groups were similar but the 9 to 11 year old group had 0.49 D less hyperopia than the 3 to 5 year old group (P < 0.001). With the exception of corneal thickness, all other ocular components had a significant sex difference (P < 0.05). The 3 to 5 year group had significantly shorter axial length and anterior chamber depth and higher corneal power than older groups (P < 0.001). Using SEQ, age, and sex, axial length can be predicted with a CART model, resulting in lower mean absolute error of 0.60 than the linear regression model (0.76). CONCLUSIONS: Despite similar values of refractive errors, ocular biometric parameters changed with age in hyperopic children, whereby axial length growth is offset by reductions in corneal power. TRANSLATIONAL RELEVANCE: We provide references for optical components in children with hyperopia, and a machine-learning model for convenient axial length estimation based on SEQ, age, and sex.

摘要

目的:本研究旨在探讨远视儿童眼生物测量参数的发展,并应用机器学习模型预测眼轴长度。

方法:纳入远视(+1 屈光度[D]至+10 D)的 3 个年龄组儿童:3 至 5 岁(n=74)、6 至 8 岁(n=102)和 9 至 11 岁(n=36)。测量眼轴长度、前房深度、晶状体厚度、中央角膜厚度和角膜曲率;所有参与者在 6 个月内进行睫状肌麻痹验光。计算等效球镜(SEQ)。采用混合效应模型比较性别和年龄组,并调整眼间相关性。采用分类回归树(CART)分析预测眼轴长度,并与线性回归进行比较。

结果:3 个年龄组的平均 SEQ 相似,但 9 至 11 岁组的远视程度比 3 至 5 岁组低 0.49 D(P<0.001)。除了角膜厚度,所有其他眼部参数均存在显著的性别差异(P<0.05)。3 至 5 岁组的眼轴长度、前房深度较短,角膜曲率较高,与年龄较大的组相比差异有统计学意义(P<0.001)。使用 SEQ、年龄和性别,可以通过 CART 模型预测眼轴长度,其平均绝对误差为 0.60,低于线性回归模型(0.76)。

结论:尽管远视儿童的屈光不正值相似,但眼生物测量参数随年龄变化,眼轴长度的增长被角膜曲率的降低所抵消。

翻译贡献者:[姓名]

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/7147bfeb9239/tvst-13-5-25-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/3f764679451c/tvst-13-5-25-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/1238c0169972/tvst-13-5-25-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/7147bfeb9239/tvst-13-5-25-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/3f764679451c/tvst-13-5-25-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/1238c0169972/tvst-13-5-25-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/11146039/7147bfeb9239/tvst-13-5-25-f003.jpg

相似文献

[1]
Ocular Biometric Components in Hyperopic Children and a Machine Learning-Based Model to Predict Axial Length.

Transl Vis Sci Technol. 2024-5-1

[2]
Preschool children with insufficient physiological hyperopia experience accelerated myopic drift.

Optom Vis Sci. 2025-5-1

[3]
Longitudinal development of ocular biometric components and refractive error in hyperopic children with infantile versus late-onset accommodative esotropia.

Ophthalmic Physiol Opt. 2025-5

[4]
Analysis of Spaceflight-Associated Biometric and Refractive Changes in Astronauts.

Am J Ophthalmol. 2025-8

[5]
Longitudinal development of ocular biometric components and refractive error in children with hyperopic anisometropia.

Ophthalmic Physiol Opt. 2025-9

[6]
Ocular biometric parameters in South-Indian children with myopia - A hospital-based retrospective descriptive analysis.

Indian J Ophthalmol. 2025-2-1

[7]
Effects of tropicamide and compound tropicamide eye drops on ocular biological parameters and choroid thickness in children.

BMC Ophthalmol. 2025-1-20

[8]
Interventions for myopia control in children: a living systematic review and network meta-analysis.

Cochrane Database Syst Rev. 2023-2-16

[9]
Differential correlations of refractive error, axial length, and axial length-to-corneal curvature ratio with anterior segment biometrics in myopic refractive surgery candidates.

Photodiagnosis Photodyn Ther. 2024-12

[10]
Interventions for myopia control in children: a living systematic review and network meta-analysis.

Cochrane Database Syst Rev. 2025-2-13

引用本文的文献

[1]
High Myopia as a Risk Factor for Severe Liver Disease in Individuals with Liver Dysfunction: Evidence from a Prospective Cohort.

J Clin Med. 2025-8-19

[2]
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.

Front Med (Lausanne). 2025-7-1

[3]
Longitudinal development of ocular biometric components and refractive error in hyperopic children with infantile versus late-onset accommodative esotropia.

Ophthalmic Physiol Opt. 2025-5

本文引用的文献

[1]
Longitudinal Changes in Refractive Development in Highly Hyperopic Children: A 2.6-11.2 Year Follow-up of Preschoolers Diagnosed with High Hyperopia.

Curr Eye Res. 2024-7

[2]
Ocular biometry in children and adolescents from 4 to 17 years: a cross-sectional study in central Germany.

Ophthalmic Physiol Opt. 2021-5

[3]
Comparison of A-Scan ultrasonography and the Lenstar optical biometer in Guinea pig eyes.

Exp Eye Res. 2021-6

[4]
Long-term refractive outcomes in children with early diagnosis of moderate to high hyperopia.

Strabismus. 2020-6

[5]
Refractive change in children with accommodative esotropia.

Br J Ophthalmol. 2020-9

[6]
Refractive Errors and Amblyopia Among Children Screened by the UCLA Preschool Vision Program in Los Angeles County.

Am J Ophthalmol. 2019-10-21

[7]
Prevalence, Characteristics, and Risk Factors of Moderate or High Hyperopia among Multiethnic Children 6 to 72 Months of Age: A Pooled Analysis of Individual Participant Data.

Ophthalmology. 2019-2-26

[8]
Ocular Component Development during Infancy and Early Childhood.

Optom Vis Sci. 2018-11

[9]
Optical 'dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies.

Ophthalmic Physiol Opt. 2018-5

[10]
Comparison of anterior segment parameters and axial lengths of myopic, emmetropic, and hyperopic children.

Int Ophthalmol. 2019-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索