Suppr超能文献

基于 3D U-Net 对慢性硬脑膜下血肿进行自动分割的血肿体积在临床中的应用。

Clinical Use of Hematoma Volume Based On Automated Segmentation of Chronic Subdural Hematoma Using 3D U-Net.

机构信息

Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, 510-0293, Suzuka City, Mie, Japan.

Department of Radiological Technology, Fuji City General Hospital, 50 Takashima-cho, 417-8567, Fuji City, Shizuoka, Japan.

出版信息

Clin Neuroradiol. 2024 Dec;34(4):799-807. doi: 10.1007/s00062-024-01428-w. Epub 2024 May 30.

Abstract

PURPOSE

To propose a method for calculating hematoma volume based on automatic segmentation of chronic subdural hematoma (CSDH) using 3D U‑net and investigate whether it can be used clinically to predict recurrence.

METHODS

Hematoma volumes manually measured from pre- and postoperative computed tomography (CT) images were used as ground truth data to train 3D U‑net in 200 patients (400 CT scans). A total of 215 patients (430 CT scans) were used as test data to output segmentation results from the trained 3D U‑net model. The similarity with the ground truth data was evaluated using Dice scores for pre and postoperative separately. The recurrence prediction accuracy was evaluated by obtaining receiver operating characteristic (ROC) curves for the segmentation results. Using a typical mobile PC, the computation time per case was measured and the average time was calculated.

RESULTS

The median Dice score of the test data were preoperative hematoma volume (Pre-HV): 0.764 and postoperative subdural cavity volume (Post-SCV): 0.741. In ROC analyses assessing recurrence prediction, the area under the curve (AUC) of the manual was 0.755 in Pre-HV, whereas the 3D U‑net was 0.735. In Post-SCV, the manual AUC was 0.779; the 3D U‑net was 0.736. No significant differences were found between manual and 3D U‑net for all results. Using a mobile PC, the average time taken to output the test data results was 30 s per case.

CONCLUSION

The proposed method is a simple, accurate, and clinically applicable; it can contribute to the widespread use of recurrence prediction scoring systems for CSDH.

摘要

目的

提出一种基于 3D U-Net 自动分割慢性硬脑膜下血肿(CSDH)的血肿体积计算方法,并探讨其是否可用于临床预测复发。

方法

使用 200 例(400 例 CT 扫描)患者的术前和术后 CT 图像手动测量的血肿体积作为金标准数据来训练 3D U-Net。共有 215 例(430 例 CT 扫描)患者的测试数据用于从训练好的 3D U-Net 模型输出分割结果。分别对术前和术后分别使用 Dice 评分评估与金标准数据的相似性。通过获得分割结果的受试者工作特征(ROC)曲线来评估复发预测的准确性。使用典型的移动 PC 测量每个病例的计算时间,并计算平均值。

结果

测试数据的中位数 Dice 评分分别为术前血肿体积(Pre-HV)为 0.764 和术后硬脑膜下腔体积(Post-SCV)为 0.741。在评估复发预测的 ROC 分析中,手动方法的曲线下面积(AUC)在 Pre-HV 为 0.755,而 3D U-Net 为 0.735。在 Post-SCV 中,手动 AUC 为 0.779;3D U-Net 为 0.736。所有结果中,手动方法与 3D U-Net 之间无显著差异。使用移动 PC,输出测试数据结果的平均时间为每个病例 30 秒。

结论

该方法简单、准确、临床适用,有助于广泛应用 CSDH 复发预测评分系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验