Suppr超能文献

使用深度学习方法的智能中风疾病预测模型

Intelligent Stroke Disease Prediction Model Using Deep Learning Approaches.

作者信息

Gao Chunhua, Wang Hui

机构信息

School of Tourism and Physical Health, Hezhou University, Hezhou 542899, China.

School of Artificial Intelligence, Hezhou University, Hezhou 542899, China.

出版信息

Stroke Res Treat. 2024 May 23;2024:4523388. doi: 10.1155/2024/4523388. eCollection 2024.

Abstract

Stroke is a high morbidity and mortality disease that poses a serious threat to people's health. Early recognition of the various warning signs of stroke is necessary so that timely clinical intervention can help reduce the severity of stroke. Deep neural networks have powerful feature representation capabilities and can automatically learn discriminant features from large amounts of data. This paper uses a range of physiological characteristic parameters and collaborates with deep neural networks, such as the Wasserstein generative adversarial networks with gradient penalty and regression network, to construct a stroke prediction model. Firstly, to address the problem of imbalance between positive and negative samples in the stroke public data set, we performed positive sample data augmentation and utilized WGAN-GP to generate stroke data with high fidelity and used it for the training of the prediction network model. Then, the relationship between observable physiological characteristic parameters and the predicted risk of suffering a stroke was modeled as a nonlinear mapping transformation, and a stroke prediction model based on a deep regression network was designed. Finally, the proposed method is compared with commonly used machine learning-based classification algorithms such as decision tree, random forest, support vector machine, and artificial neural networks. The prediction results of the proposed method are optimal in the comprehensive measurement index . Further ablation experiments also show that the designed prediction model has certain robustness and can effectively predict stroke diseases.

摘要

中风是一种发病率和死亡率都很高的疾病,对人们的健康构成严重威胁。早期识别中风的各种预警信号很有必要,以便及时进行临床干预,有助于降低中风的严重程度。深度神经网络具有强大的特征表示能力,能够从大量数据中自动学习判别特征。本文使用一系列生理特征参数,并与深度神经网络协作,如带有梯度惩罚的瓦瑟斯坦生成对抗网络和回归网络,来构建中风预测模型。首先,为了解决中风公共数据集中正负样本不平衡的问题,我们对正样本数据进行了增强,并利用WGAN-GP生成高保真的中风数据,并将其用于预测网络模型的训练。然后,将可观察到的生理特征参数与中风预测风险之间的关系建模为非线性映射变换,并设计了基于深度回归网络的中风预测模型。最后,将所提出的方法与常用的基于机器学习的分类算法(如决策树、随机森林、支持向量机和人工神经网络)进行比较。在所提出方法的综合测量指标中,预测结果是最优的。进一步的消融实验还表明,所设计的预测模型具有一定的鲁棒性,能够有效地预测中风疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验