Suppr超能文献

基于 miRNA 的表观遗传分子钟用于生物皮肤年龄预测。

A miRNA-based epigenetic molecular clock for biological skin-age prediction.

机构信息

Rara Avis Biotec S.L, Parc Científic de la Universitat de Valencia, Paterna, 46980, Spain.

Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, 46010, Spain.

出版信息

Arch Dermatol Res. 2024 Jun 1;316(6):326. doi: 10.1007/s00403-024-03129-3.

Abstract

Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.

摘要

皮肤衰老(Skin aging)是人类衰老过程中可见的特征之一。近年来,已经基于蛋白质或表观遗传标记生成了不同的生物钟,但很少有研究关注皮肤中的生物年龄。阻止衰老过程,甚至能够使生物体从老年恢复到年轻状态,是过去 20 年在生物医学研究中的主要挑战之一。我们已经实施了几个机器学习模型,包括回归和分类算法,以创建基于 miRNA 表达谱的表观遗传分子钟,用于预测与皮肤相关的生物年龄。我们的最佳模型能够根据年龄组(18-28;29-39;40-50;51-60 或 61-83 岁)对皮肤样本进行分类,准确率为 80%,或者使用 1856 个独特 miRNA 的表达水平,以 10.89 年的平均绝对误差预测年龄。我们的研究结果表明,这种表观遗传时钟具有很大的应用潜力,有望成为药物-化妆品行业的一种新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f26b/11144124/e69cec34fa32/403_2024_3129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验