Suppr超能文献

基于人工智能的青光眼和糖尿病视网膜病变检测,使用 MATLAB - 重新训练的 AlexNet 卷积神经网络。

Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB - retrained AlexNet convolutional neural network.

机构信息

School of Biological Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Imbabura, 100119, Ecuador.

Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Aragon, 50018, Spain.

出版信息

F1000Res. 2024 Apr 3;12:14. doi: 10.12688/f1000research.122288.2. eCollection 2023.

Abstract

BACKGROUND

Glaucoma and diabetic retinopathy (DR) are the leading causes of irreversible retinal damage leading to blindness. Early detection of these diseases through regular screening is especially important to prevent progression. Retinal fundus imaging serves as the principal method for diagnosing glaucoma and DR. Consequently, automated detection of eye diseases represents a significant application of retinal image analysis. Compared with classical diagnostic techniques, image classification by convolutional neural networks (CNN) exhibits potential for effective eye disease detection.

METHODS

This paper proposes the use of MATLAB - retrained AlexNet CNN for computerized eye diseases identification, particularly glaucoma and diabetic retinopathy, by employing retinal fundus images. The acquisition of the database was carried out through free access databases and access upon request. A transfer learning technique was employed to retrain the AlexNet CNN for non-disease (Non_D), glaucoma (Sus_G) and diabetic retinopathy (Sus_R) classification. Moreover, model benchmarking was conducted using ResNet50 and GoogLeNet architectures. A Grad-CAM analysis is also incorporated for each eye condition examined.

RESULTS

Metrics for validation accuracy, false positives, false negatives, precision, and recall were reported. Validation accuracies for the NetTransfer (I-V) and netAlexNet ranged from 89.7% to 94.3%, demonstrating varied effectiveness in identifying Non_D, Sus_G, and Sus_R categories, with netAlexNet achieving a 93.2% accuracy in the benchmarking of models against netResNet50 at 93.8% and netGoogLeNet at 90.4%.

CONCLUSIONS

This study demonstrates the efficacy of using a MATLAB-retrained AlexNet CNN for detecting glaucoma and diabetic retinopathy. It emphasizes the need for automated early detection tools, proposing CNNs as accessible solutions without replacing existing technologies.

摘要

背景

青光眼和糖尿病视网膜病变(DR)是导致视网膜损伤不可逆转而失明的主要原因。通过定期筛查早期发现这些疾病对于预防疾病进展尤为重要。眼底视网膜成像作为诊断青光眼和 DR 的主要方法。因此,视网膜图像分析的一个重要应用是自动检测眼部疾病。与经典诊断技术相比,卷积神经网络(CNN)的图像分类在有效检测眼部疾病方面具有潜力。

方法

本文提出了使用 MATLAB 重新训练的 AlexNet CNN 通过眼底图像对计算机眼部疾病(特别是青光眼和糖尿病视网膜病变)进行识别。通过免费访问数据库和请求访问来获取数据库。采用迁移学习技术对 AlexNet CNN 进行重新训练,以进行非疾病(Non_D)、青光眼(Sus_G)和糖尿病视网膜病变(Sus_R)分类。此外,还使用 ResNet50 和 GoogLeNet 架构进行模型基准测试。还对每种眼部状况进行了 Grad-CAM 分析。

结果

报告了验证准确性、假阳性、假阴性、精度和召回率的指标。NetTransfer(I-V)和 netAlexNet 的验证准确率从 89.7%到 94.3%不等,表明在识别 Non_D、Sus_G 和 Sus_R 类别方面的效果不同,netAlexNet 在与 netResNet50 的模型基准测试中达到 93.2%的准确率,而与 netGoogLeNet 相比则达到 90.4%。

结论

本研究表明,使用 MATLAB 重新训练的 AlexNet CNN 检测青光眼和糖尿病视网膜病变是有效的。它强调了需要自动化早期检测工具,提出了 CNN 作为一种易于访问的解决方案,而不会取代现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e2/11143440/b478754836ed/f1000research-12-163934-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验