Nanoscale Science Program, Department of Chemistry University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.
Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, São Paulo 01246-903, Brazil.
ACS Appl Bio Mater. 2024 Jun 17;7(6):3587-3604. doi: 10.1021/acsabm.4c00432. Epub 2024 Jun 4.
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
大自然一直在不断改进其过程,以实现最佳效率,尤其是在生物系统中。本文探讨了全球研究人员的合作努力,旨在通过开发更智能、更有效的纳米技术和生物材料来模仿自然的效率。最近的进展强调了利用工程核酸和蛋白质来完成特定任务的进展和前景,这些任务的灵感来自于自然功能。重点是开发改进的方法来对这些材料进行特征描述、理解和重新编程,以执行用户定义的功能,包括个性化治疗、靶向药物输送方法、工程支架和可重构纳米器件。学术界、政府机构、生物技术和医疗领域的贡献提供了多样化的视角,有望为广泛的纳米生物技术目标提供全面的方法。涵盖了从 mRNA 疫苗设计到可编程基于蛋白质的纳米计算代理的各个主题,这项工作提供了对纳米生物技术未来增强仿生学和技术创新的轨迹的深刻见解。