Suppr超能文献

运用基于神经网络元模型的模拟多目标优化管理急诊科低危患者。

Managing low-acuity patients in an Emergency Department through simulation-based multiobjective optimization using a neural network metamodel.

机构信息

Institute for System Analysis and Computer Science "A. Ruberti", National Research Council of Italy, via dei Taurini, 19, Rome, 00185, Italy.

Department of Industrial and Systems Engineering, Lehigh University, 200 W Packer Ave, Bethlehem, PA, 18015, USA.

出版信息

Health Care Manag Sci. 2024 Sep;27(3):415-435. doi: 10.1007/s10729-024-09678-3. Epub 2024 Jun 10.

Abstract

This paper deals with Emergency Department (ED) fast-tracks for low-acuity patients, a strategy often adopted to reduce ED overcrowding. We focus on optimizing resource allocation in minor injuries units, which are the ED units that can treat low-acuity patients, with the aim of minimizing patient waiting times and ED operating costs. We formulate this problem as a general multiobjective simulation-based optimization problem where some of the objectives are expensive black-box functions that can only be evaluated through a time-consuming simulation. To efficiently solve this problem, we propose a metamodeling approach that uses an artificial neural network to replace a black-box objective function with a suitable model. This approach allows us to obtain a set of Pareto optimal points for the multiobjective problem we consider, from which decision-makers can select the most appropriate solutions for different situations. We present the results of computational experiments conducted on a real case study involving the ED of a large hospital in Italy. The results show the reliability and effectiveness of our proposed approach, compared to the standard approach based on derivative-free optimization.

摘要

本文讨论了针对低危患者的急诊(ED)快速通道,这是一种常用于减少 ED 拥堵的策略。我们专注于优化轻伤单位的资源分配,轻伤单位是可以治疗低危患者的 ED 单位,目标是最小化患者等待时间和 ED 运营成本。我们将这个问题表述为一个通用的多目标基于模拟的优化问题,其中一些目标是昂贵的黑盒函数,只能通过耗时的模拟进行评估。为了有效地解决这个问题,我们提出了一种基于元模型的方法,该方法使用人工神经网络来用合适的模型替代黑盒目标函数。这种方法使我们能够获得所考虑的多目标问题的一组 Pareto 最优解,决策者可以从中为不同情况选择最合适的解决方案。我们在意大利一家大医院的 ED 实际案例研究上进行了计算实验,结果表明,与基于无导数优化的标准方法相比,我们提出的方法是可靠和有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00ae/11461778/3e385d2c4d38/10729_2024_9678_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验