Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Technische Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623, Berlin, Germany.
Nat Commun. 2023 Feb 22;14(1):991. doi: 10.1038/s41467-023-36574-1.
Green hydrogen has been identified as a critical enabler in the global transition to sustainable energy and decarbonized society, but it is still not economically competitive compared to fossil-fuel-based hydrogen. To overcome this limitation, we propose to couple photoelectrochemical (PEC) water splitting with the hydrogenation of chemicals. Here, we evaluate the potential of co-producing hydrogen and methyl succinic acid (MSA) by coupling the hydrogenation of itaconic acid (IA) inside a PEC water splitting device. A negative net energy balance is predicted to be achieved when the device generates only hydrogen, but energy breakeven can already be achieved when a small ratio (~2%) of the generated hydrogen is used in situ for IA-to-MSA conversion. Moreover, the simulated coupled device produces MSA with much lower cumulative energy demand than conventional hydrogenation. Overall, the coupled hydrogenation concept offers an attractive approach to increase the viability of PEC water splitting while at the same time decarbonizing valuable chemical production.
绿色氢气已被确定为全球向可持续能源和脱碳社会转型的关键推动因素,但与基于化石燃料的氢气相比,它在经济上仍不具有竞争力。为了克服这一限制,我们建议将光电化学(PEC)水分解与化学品加氢相结合。在这里,我们通过在 PEC 水分解装置内加氢马来酸(IA)来评估同时生产氢气和丁二酸(MSA)的潜力。当设备仅产生氢气时,预计会出现负净能量平衡,但当仅使用生成的氢气中的一小部分(~2%)就地用于 IA 到 MSA 转化时,就可以实现能量平衡。此外,模拟的耦合装置生产 MSA 的累积能量需求比传统加氢低得多。总体而言,耦合加氢概念为提高 PEC 水分解的可行性提供了一种有吸引力的方法,同时使有价值的化学生产脱碳。