Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
ACS Appl Bio Mater. 2024 Jul 15;7(7):4533-4541. doi: 10.1021/acsabm.4c00411. Epub 2024 Jun 15.
Photothermal microneedle (MN) arrays have the potential to improve the treatment of various skin conditions such as bacterial skin infections. However, the fabrication of photothermal MN arrays relies on time-consuming and potentially expensive microfabrication and molding techniques, which limits their size and translation to clinical application. Furthermore, the traditional mold-and-casting method is often limited in terms of the size customizability of the photothermal array. To overcome these challenges, we fabricated photothermal MN arrays directly via 3D-printing using plasmonic Ag/SiO (2 wt % SiO) nanoaggregates dispersed in ultraviolet photocurable resin on a commercial low-cost liquid crystal display stereolithography printer. We successfully printed MN arrays in a single print with a translucent, nanoparticle-free support layer and photothermal MNs incorporating plasmonic nanoaggregates in a selective fashion. The photothermal MN arrays showed sufficient mechanical strength and heating efficiency to increase the intradermal temperature to clinically relevant temperatures. Finally, we explored the potential of photothermal MN arrays to improve antibacterial therapy by killing two bacterial species commonly found in skin infections. To the best of our knowledge, this is the first time describing the printing of photothermal MNs in a single step. The process introduced here allows for the translatable fabrication of photothermal MN arrays with customizable dimensions that can be applied to the treatment of various skin conditions such as bacterial infections.
光热微针 (MN) 阵列有可能改善各种皮肤状况的治疗,例如细菌皮肤感染。然而,光热 MN 阵列的制造依赖于耗时且潜在昂贵的微制造和成型技术,这限制了它们的尺寸和向临床应用的转化。此外,传统的模具和铸造方法通常在光热阵列的尺寸可定制性方面受到限制。为了克服这些挑战,我们使用在商业低成本液晶显示器立体光刻打印机上的分散在紫外光可固化树脂中的等离子体 Ag/SiO2(2wt%SiO2)纳米聚集体直接通过 3D 打印制造了光热 MN 阵列。我们成功地在一个具有半透明、无纳米颗粒的支撑层的单次打印中打印了 MN 阵列,并以选择性的方式将包含等离子体纳米聚集体的光热 MN 集成在一起。光热 MN 阵列表现出足够的机械强度和加热效率,可将皮肤内温度提高到临床相关温度。最后,我们探讨了光热 MN 阵列通过杀死两种常见的皮肤感染细菌来提高抗菌治疗效果的潜力。据我们所知,这是首次描述在单个步骤中打印光热 MN。本文介绍的方法允许可翻译制造具有可定制尺寸的光热 MN 阵列,可应用于各种皮肤状况的治疗,例如细菌感染。