Suppr超能文献

BrainLossNet:一种快速、准确且稳健的方法,可从纵向 MRI 估计脑容量损失。

BrainLossNet: a fast, accurate and robust method to estimate brain volume loss from longitudinal MRI.

机构信息

Jung Diagnostics GmbH, Hamburg, Germany.

Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1763-1771. doi: 10.1007/s11548-024-03201-3. Epub 2024 Jun 16.

Abstract

PURPOSE

MRI-derived brain volume loss (BVL) is widely used as neurodegeneration marker. SIENA is state-of-the-art for BVL measurement, but limited by long computation time. Here we propose "BrainLossNet", a convolutional neural network (CNN)-based method for BVL-estimation.

METHODS

BrainLossNet uses CNN-based non-linear registration of baseline(BL)/follow-up(FU) 3D-T1w-MRI pairs. BVL is computed by non-linear registration of brain parenchyma masks segmented in the BL/FU scans. The BVL estimate is corrected for image distortions using the apparent volume change of the total intracranial volume. BrainLossNet was trained on 1525 BL/FU pairs from 83 scanners. Agreement between BrainLossNet and SIENA was assessed in 225 BL/FU pairs from 94 MS patients acquired with a single scanner and 268 BL/FU pairs from 52 scanners acquired for various indications. Robustness to short-term variability of 3D-T1w-MRI was compared in 354 BL/FU pairs from a single healthy men acquired in the same session without repositioning with 116 scanners (Frequently-Traveling-Human-Phantom dataset, FTHP).

RESULTS

Processing time of BrainLossNet was 2-3 min. The median [interquartile range] of the SIENA-BrainLossNet BVL difference was 0.10% [- 0.18%, 0.35%] in the MS dataset, 0.08% [- 0.14%, 0.28%] in the various indications dataset. The distribution of apparent BVL in the FTHP dataset was narrower with BrainLossNet (p = 0.036; 95th percentile: 0.20% vs 0.32%).

CONCLUSION

BrainLossNet on average provides the same BVL estimates as SIENA, but it is significantly more robust, probably due to its built-in distortion correction. Processing time of 2-3 min makes BrainLossNet suitable for clinical routine. This can pave the way for widespread clinical use of BVL estimation from intra-scanner BL/FU pairs.

摘要

目的

MRI 衍生的脑容量损失(BVL)被广泛用作神经退行性变的标志物。SIENA 是 BVL 测量的最新技术,但受到计算时间长的限制。这里我们提出了“BrainLossNet”,一种基于卷积神经网络(CNN)的 BVL 估计方法。

方法

BrainLossNet 使用基于 CNN 的非线性配准基线(BL)/随访(FU)3D-T1w-MRI 对。通过对 BL/FU 扫描中分割的脑实质掩模进行非线性配准来计算 BVL。使用总颅内体积的表观体积变化校正 BVL 估计值的图像失真。BrainLossNet 在来自 83 台扫描仪的 1525 对 BL/FU 上进行了训练。在来自 94 名 MS 患者的单个扫描仪采集的 225 对 BL/FU 上和来自用于各种适应症的 52 台扫描仪采集的 268 对 BL/FU 上评估了 BrainLossNet 和 SIENA 的一致性。在同一会话中未重新定位的情况下,在来自单个健康男性的 354 对 BL/FU 上比较了 3D-T1w-MRI 的短期变异性的稳健性,共 116 台扫描仪(经常旅行人体模型数据集,FTHP)。

结果

BrainLossNet 的处理时间为 2-3 分钟。在 MS 数据集和各种适应症数据集,SIENA-BrainLossNet BVL 差值的中位数[四分位数范围]分别为 0.10%[-0.18%,0.35%]和 0.08%[-0.14%,0.28%]。FTHP 数据集的表观 BVL 分布更窄,BrainLossNet (p=0.036;95% 位数:0.20% vs 0.32%)。

结论

BrainLossNet 平均提供与 SIENA 相同的 BVL 估计值,但它具有更高的稳健性,可能是由于其内置的失真校正。2-3 分钟的处理时间使 BrainLossNet 适用于临床常规。这为广泛使用 BL/FU 对的 intra-scanner 进行 BVL 估计铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验