文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米制剂在药物和生物医学应用中的应用:绿色视角。

Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives.

机构信息

Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia.

Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania.

出版信息

Int J Mol Sci. 2024 May 27;25(11):5842. doi: 10.3390/ijms25115842.


DOI:10.3390/ijms25115842
PMID:38892030
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11172476/
Abstract

This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.

摘要

本研究简要讨论了主要的纳米药物制剂,以及纳米技术对药物未来的影响。还强调了生物制造的有效和环保策略。概述了现代设计药物纳米制剂的方法(例如,3D 打印、植物纳米技术、仿生学/生物灵感等)。本文讨论了需要利用自然资源来设计具有治疗功效的新型绿色纳米制剂的必要性。纳米药物研究仍处于早期阶段,必须仔细考虑纳米材料的制备。因此,不能忽视药物纳米制剂的安全性和长期影响。纳米药物的测试是其进一步应用的重要环节。通过脱细胞化植物叶片获得的植物支架是用于纳米药物测试的有价值的仿生模型,避免了使用动物。由于其独特的性质和相对于传统制剂的优势,纳米制剂在各个领域都非常重要,特别是在药学、医学、农业和材料科学领域,可提高溶解度、生物利用度、靶向药物输送、控制释放和降低毒性。纳米药物已经从实验阶段过渡到成为临床实践的重要组成部分,在癌症治疗、传染病、神经紊乱、个性化医疗和先进诊断等医学领域显著改善了治疗效果。以下是突出其重要性的要点。最后一节提到了重大挑战、机遇和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/456304435083/ijms-25-05842-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/041b8f5103b3/ijms-25-05842-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/cc291cafd93d/ijms-25-05842-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/a19b2baf572a/ijms-25-05842-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/a44df7fe298c/ijms-25-05842-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/36434c116800/ijms-25-05842-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/15b477557608/ijms-25-05842-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/11948112063d/ijms-25-05842-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/036411a6b1e2/ijms-25-05842-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/9082b5dc01ca/ijms-25-05842-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/d8e46e645f7d/ijms-25-05842-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/f80df0d5877b/ijms-25-05842-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/8d0f1841569d/ijms-25-05842-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/f4f378cc53fb/ijms-25-05842-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/4e70c28af065/ijms-25-05842-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/a1251a79b179/ijms-25-05842-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/74deb0b63d89/ijms-25-05842-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/95736f3c3a98/ijms-25-05842-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/456304435083/ijms-25-05842-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/041b8f5103b3/ijms-25-05842-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/cc291cafd93d/ijms-25-05842-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/a19b2baf572a/ijms-25-05842-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/a44df7fe298c/ijms-25-05842-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/36434c116800/ijms-25-05842-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/15b477557608/ijms-25-05842-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/11948112063d/ijms-25-05842-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/036411a6b1e2/ijms-25-05842-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/9082b5dc01ca/ijms-25-05842-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/d8e46e645f7d/ijms-25-05842-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/f80df0d5877b/ijms-25-05842-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/8d0f1841569d/ijms-25-05842-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/f4f378cc53fb/ijms-25-05842-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/4e70c28af065/ijms-25-05842-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/a1251a79b179/ijms-25-05842-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/74deb0b63d89/ijms-25-05842-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/95736f3c3a98/ijms-25-05842-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af0/11172476/456304435083/ijms-25-05842-g018.jpg

相似文献

[1]
Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives.

Int J Mol Sci. 2024-5-27

[2]
Emerging nanopharmaceuticals.

Nanomedicine. 2008-12

[3]
Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation.

Nanoscale. 2013-9-21

[4]
Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications.

Nanomedicine (Lond). 2008-6

[5]
Nanostructured materials for applications in drug delivery and tissue engineering.

J Biomater Sci Polym Ed. 2007

[6]
Towards improved therapies using nanopharmaceuticals: recent patents on pharmaceutical nanoformulations.

Recent Pat Food Nutr Agric. 2012-12

[7]
Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients.

Expert Opin Drug Discov. 2021-3

[8]
Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern.

Nanomedicine (Lond). 2017-2

[9]
Nanostructure-mediated drug delivery.

Nanomedicine. 2005-3

[10]
Unique benefits of nanotechnology to drug delivery and diagnostics.

Methods Mol Biol. 2011

引用本文的文献

[1]
Editorial on Special Issue: "Advances in Nanotechnology-Based Drug Delivery Systems".

Pharmaceutics. 2025-8-10

[2]
Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges.

J Nanobiotechnology. 2025-7-28

[3]
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems.

Pharmaceutics. 2025-2-24

[4]
Advantages and therapeutic applications of different semisolids as vehicles for nano-based systems.

Ther Deliv. 2025-6

[5]
Flavonoids and Flavonoid-Based Nanopharmaceuticals as Promising Therapeutic Strategies for Colorectal Cancer-An Updated Literature Review.

Pharmaceuticals (Basel). 2025-2-8

[6]
Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities.

Cancers (Basel). 2025-2-19

[7]
Anti-tumor potential of Harmine and its derivatives: recent trends and advancements.

Discov Oncol. 2025-2-15

[8]
Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics.

J Nanobiotechnology. 2025-2-1

[9]
Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy.

Pharmaceutics. 2025-1-15

[10]
Special Issue on Nanoparticles in Nanobiotechnology and Nanomedicine.

Int J Mol Sci. 2024-12-31

本文引用的文献

[1]
Liposome-Hydrogel Composites for Controlled Drug Delivery Applications.

Gels. 2024-4-22

[2]
Lipid-based nanoparticles as drug delivery carriers for cancer therapy.

Front Oncol. 2024-4-10

[3]
Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment.

Nanomaterials (Basel). 2024-3-22

[4]
Biocomposite Materials Derived from : Eco-Design and Biophysical Evaluation.

Materials (Basel). 2024-3-6

[5]
Biosynthesis of palladium, platinum, and their bimetallic nanoparticles using rosemary and ginseng herbal plants: evaluation of anticancer activity.

Sci Rep. 2024-3-9

[6]
Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer.

Pharm Dev Technol. 2024-3

[7]
Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy.

Pharmaceutics. 2024-2-7

[8]
Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles.

Int J Mol Sci. 2024-2-5

[9]
Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication.

Heliyon. 2024-1-17

[10]
Biologics, theranostics, and personalized medicine in drug delivery systems.

Pharmacol Res. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索