Suppr超能文献

一种用于从细胞系化合物筛选中稳健预测个性化临床药物反应的上下文感知去混杂自动编码器。

A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening.

作者信息

He Di, Liu Qiao, Wu You, Xie Lei

机构信息

PhD program in Computer Science, Graduate Center, City University of New York, New York, NY, USA.

Department of Computer Science, Hunter College, City University of New York, New York, NY, USA.

出版信息

Nat Mach Intell. 2022 Oct;4(10):879-892. doi: 10.1038/s42256-022-00541-0. Epub 2022 Oct 17.

Abstract

Accurate and robust prediction of patient-specific responses to a new compound is critical to personalized drug discovery and development. However, patient data are often too scarce to train a generalized machine learning model. Although many methods have been developed to utilize cell-line screens for predicting clinical responses, their performances are unreliable owing to data heterogeneity and distribution shift. Here we have developed a novel context-aware deconfounding autoencoder (CODE-AE) that can extract intrinsic biological signals masked by context-specific patterns and confounding factors. Extensive comparative studies demonstrated that CODE-AE effectively alleviated the out-of-distribution problem for the model generalization and significantly improved accuracy and robustness over state-of-the-art methods in predicting patient-specific clinical drug responses purely from cell-line compound screens. Using CODE-AE, we screened 59 drugs for 9,808 patients with cancer. Our results are consistent with existing clinical observations, suggesting the potential of CODE-AE in developing personalized therapies and drug response biomarkers.

摘要

准确且稳健地预测患者对新化合物的特异性反应对于个性化药物研发至关重要。然而,患者数据往往过于稀少,无法训练出通用的机器学习模型。尽管已经开发了许多方法来利用细胞系筛选预测临床反应,但由于数据异质性和分布偏移,它们的性能并不可靠。在此,我们开发了一种新型的上下文感知去混杂自动编码器(CODE-AE),它可以提取被特定上下文模式和混杂因素掩盖的内在生物信号。广泛的比较研究表明,CODE-AE有效地缓解了模型泛化中的分布外问题,并且在仅根据细胞系化合物筛选预测患者特异性临床药物反应方面,比现有方法显著提高了准确性和稳健性。使用CODE-AE,我们为9808名癌症患者筛选了59种药物。我们的结果与现有临床观察结果一致,表明CODE-AE在开发个性化疗法和药物反应生物标志物方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead1/11185412/c8c9306fdbc7/nihms-1949517-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验