Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
J Chem Inf Model. 2024 Jul 8;64(13):5242-5252. doi: 10.1021/acs.jcim.4c00552. Epub 2024 Jun 24.
Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here, we present a persistent homology (PH)-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information on lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of dipalmitoyl-phosphatidylcholine membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by PH filtration, in which interaction spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a that captures enduring key of the configuration landscape using homology, yielding . Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g., sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.
生物膜在细胞区室化、结构和信号通路中起着关键作用。在不同的温度下,单个膜脂质从不同的构象中采样,这一过程经常导致更高阶的相行为和现象。在这里,我们提出了一种基于持久同调(PH)的方法,用于量化单个和整体脂质的结构特征,提供关于脂质尾部组织的局部和上下文信息。我们的方法利用代数拓扑学和机器学习的数学机制,从静态坐标推断脂质的温度依赖结构信息。为了训练我们的模型,我们在不同的温度下生成了多个二棕榈酰磷脂酰胆碱膜的分子动力学轨迹。然后,通过 PH 过滤为每组脂质坐标构建一个指纹,在过滤过程中,在跟踪脂质原子的交点的同时,围绕脂质原子生长相互作用球。球体过滤形成一个,使用同调来捕获配置景观的持久关键特征,从而产生。在对生理相关温度进行指纹提取后,将持久数据用于训练基于注意力的神经网络,以便将有效温度值分配给选定的膜区域。我们基于持久同调的方法通过有效温度捕获了邻近其他膜成分(例如固醇和蛋白质)的脂质的局部结构效应。这种拓扑学习方法可以从多个空间分辨率的静态坐标预测脂质的有效温度。该工具称为 MembTDA,可以在 https://github.com/hyunp2/Memb-TDA 上访问。