Sang Liwen, Liao Meiyong, Sumiya Masatomo, Yang Xuelin, Shen Bo
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076, Japan.
Fundam Res. 2021 Dec 1;3(3):403-408. doi: 10.1016/j.fmre.2021.11.024. eCollection 2023 May.
The highly efficient photovoltaic cells require the In-rich InGaN film with a thickness more than 300 nm to achieve the effective photo⋅electricity energy conversion. However, the InGaN thick films suffer from poor crystalline quality and phase separations by using the conventional low-pressure metal organic chemical vapor deposition (MOCVD). We report on the growth of 0.3-1 μm-thick InGaN films with a specially designed vertical-type high-pressure MOCVD at the pressure up to 2.5 atms. The In incorporation is found to be greatly enhanced at the elevated pressures although the growth temperatures are the same. The phase separations are inhibited when the growth pressure is higher than atmospheric pressure, leading to the improved crystalline quality and better surface morphologies especially for the In-rich InGaN. The InGaN with the thickness of 300 nm is further demonstrated as the active region of solar cells, and the widest photoresponse range from ultraviolet to more than 750 nm is achieved.
高效光伏电池需要厚度超过300 nm的富铟氮化铟镓(InGaN)薄膜来实现有效的光电能量转换。然而,采用传统的低压金属有机化学气相沉积(MOCVD)方法生长的InGaN厚膜存在结晶质量差和相分离问题。我们报道了在高达2.5个大气压的压力下,利用特殊设计的垂直型高压MOCVD生长0.3 - 1μm厚的InGaN薄膜。尽管生长温度相同,但发现在较高压力下铟的掺入量大大增加。当生长压力高于大气压时,相分离受到抑制,从而改善了结晶质量并获得了更好的表面形貌,特别是对于富铟InGaN。进一步证明,厚度为300 nm的InGaN可作为太阳能电池的有源区,并实现了从紫外到超过750 nm的最宽光响应范围。