Suppr超能文献

基于炎症生物标志物的垂直可视化模型用于预测冠状动脉造影显示为中度病变的不稳定型心绞痛患者的长期预后

Inflammation Biomarker-Driven Vertical Visualization Model for Predicting Long-Term Prognosis in Unstable Angina Pectoris Patients with Angiographically Intermediate Coronary Lesions.

作者信息

Zhou Bowen, Tan Wuping, Duan Shoupeng, Wang Yijun, Bian Fenlan, Zhao Peng, Wang Jian, Yao Zhuoya, Li Hui, Hu Xuemin, Wang Jun, Liu Jinjun

机构信息

Graduate School, Bengbu Medical University, Bengbu, Anhui, People's Republic of China.

Department of Cardiology; The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People's Republic of China.

出版信息

J Inflamm Res. 2024 Dec 6;17:10571-10584. doi: 10.2147/JIR.S497546. eCollection 2024.

Abstract

OBJECTIVE

Angina, a prevalent manifestation of coronary artery disease, is primarily associated with inflammation, an established contributor to the pathogenesis of atherosclerosis and acute coronary syndromes (ACS). Various inflammatory markers are employed in clinical practice to predict patient prognosis and optimize clinical decision-making in the management of ACS. This study investigated the prognostic significance of integrating commonly used, easily repeatable inflammatory biomarkers within a multimodal preoperative prediction model in patients presenting with unstable Angina Pectoris (UAP) and intermediate coronary lesions.

METHODS

This retrospective analysis included patients diagnosed with UAP and intermediate coronary lesions (50%-70% stenosis) who underwent coronary angiography at our hospital between January 2019 and June 2021. The assessed outcome was the occurrence of major adverse cardiac and cerebrovascular events (MACCEs). The Boruta algorithm was applied to identify potential risk factors and develop a prognostic multimodal model.

RESULTS

A total of 773 patients were enrolled and divided into a training cohort (n=463) and validation cohort (n=310). A nomogram was constructed to predict the probability of MACCE-free survival based on five clinical features: diabetes mellitus, current smoking, history of myocardial infarction, neutrophil-to-lymphocyte ratio, and fasting blood glucose. In the training cohort, the area under the curve values for the nomogram at 24, 32, and 40 months were 0.669, 0.707, and 0.718, respectively, while those in the validation cohort were 0.613, 0.612 and 0.630, respectively. The model demonstrated good calibration in both cohorts with predicted outcomes aligning well with actual results at all time points up to 40 months. Furthermore, decision curve analysis showed significant clinical utility of the model across the specified time intervals.

CONCLUSION

The developed preoperative prognostic model visually illustrates the association among inflammation, blood glucose level, established risk factors, and long-term MACCEs in UAP patients with intermediate coronary lesions.

摘要

目的

心绞痛是冠状动脉疾病的常见表现,主要与炎症相关,炎症是动脉粥样硬化和急性冠状动脉综合征(ACS)发病机制中已确定的一个因素。临床实践中使用各种炎症标志物来预测患者预后,并在ACS管理中优化临床决策。本研究调查了在不稳定型心绞痛(UAP)和中度冠状动脉病变患者的多模式术前预测模型中整合常用、易于重复检测的炎症生物标志物的预后意义。

方法

这项回顾性分析纳入了2019年1月至2021年6月期间在我院接受冠状动脉造影的诊断为UAP和中度冠状动脉病变(狭窄50%-70%)的患者。评估的结果是主要不良心脑血管事件(MACCE)的发生情况。应用Boruta算法识别潜在风险因素并建立预后多模式模型。

结果

共纳入773例患者,分为训练队列(n = 463)和验证队列(n = 310)。构建了一个列线图,基于五个临床特征预测无MACCE生存的概率:糖尿病、当前吸烟、心肌梗死病史、中性粒细胞与淋巴细胞比值和空腹血糖。在训练队列中,列线图在24、32和40个月时的曲线下面积值分别为0.669、0.707和0.718,而在验证队列中分别为0.613、0.612和0.630。该模型在两个队列中均显示出良好的校准,在长达40个月的所有时间点,预测结果与实际结果都非常吻合。此外,决策曲线分析表明该模型在指定时间间隔内具有显著的临床实用性。

结论

所建立的术前预后模型直观地显示了炎症、血糖水平、既定风险因素与中度冠状动脉病变的UAP患者长期MACCE之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5cb/11629667/df6cd5eee39d/JIR-17-10571-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验