Suppr超能文献

3D打印重新定义了用于透皮给药的微针制造。

3D printing redefines microneedle fabrication for transdermal drug delivery.

作者信息

Song Ki-Young, Zhang Wen-Jun, Behzadfar Mahtab

机构信息

The school of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.

The Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada.

出版信息

Biomed Eng Lett. 2024 Mar 29;14(4):737-746. doi: 10.1007/s13534-024-00368-1. eCollection 2024 Jul.

Abstract

Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a groundbreaking and cost-effective method for producing MNs utilizing fused deposition modeling (FDM) 3D printing technology to enhance transdermal drug delivery. The proposed fabrication process involves the elongation of molten polylactic acid (PLA) filaments to create meticulously designed conoid and neiloid MNs with smooth surfaces. This study underscores the critical role of printing parameters, particularly extrusion length and printing speed, in determining the shape of the MNs. Notably, the conoid-shaped MNs exhibit exceptional skin-penetrating capabilities. In order to evaluate their effectiveness, the MNs were tested on a polydimethylsiloxane (PDMS) skin model for skin penetration. The results highlight the high potential of 3D-printed MNs for transdermal drug administration. This novel approach capitalizes on the benefits of 3D printing technology to fabricate MNs that hold the promise of transforming painless drug administration for a variety of medical applications.

摘要

微针已成为一种创新的、几乎无痛的皮内给药技术。然而,复杂且昂贵的制造过程限制了它们的广泛应用,特别是对于需要频繁给药的个体。本研究介绍了一种开创性的、具有成本效益的微针生产方法,该方法利用熔融沉积建模(FDM)3D打印技术来增强透皮给药。所提出的制造过程包括拉伸熔融的聚乳酸(PLA)长丝,以制造具有光滑表面的精心设计的圆锥体和针状体微针。本研究强调了打印参数,特别是挤出长度和打印速度,在确定微针形状方面的关键作用。值得注意的是,圆锥体形状的微针表现出卓越的皮肤穿透能力。为了评估它们的有效性,在聚二甲基硅氧烷(PDMS)皮肤模型上对微针进行了皮肤穿透测试。结果突出了3D打印微针在透皮给药方面的巨大潜力。这种新颖的方法利用了3D打印技术的优势来制造微针,有望为各种医疗应用带来无痛给药的变革。

相似文献

1
3D printing redefines microneedle fabrication for transdermal drug delivery.
Biomed Eng Lett. 2024 Mar 29;14(4):737-746. doi: 10.1007/s13534-024-00368-1. eCollection 2024 Jul.
2
Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
Microsyst Nanoeng. 2021 Aug 2;7:58. doi: 10.1038/s41378-021-00284-9. eCollection 2021.
3
Biodegradable 3D printed polymer microneedles for transdermal drug delivery.
Lab Chip. 2018 Apr 17;18(8):1223-1230. doi: 10.1039/c8lc00098k.
4
Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features.
Biosensors (Basel). 2022 Jul 6;12(7):491. doi: 10.3390/bios12070491.
5
Recent progress in the 3D printing of microneedle patches for biomedical applications.
Int J Pharm. 2025 Jan 5;668:124995. doi: 10.1016/j.ijpharm.2024.124995. Epub 2024 Nov 23.
6
Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery.
Pharmaceutics. 2023 May 25;15(6):1597. doi: 10.3390/pharmaceutics15061597.
7
Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate.
Drug Deliv Transl Res. 2022 May;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4. Epub 2021 May 22.
8
3D printed microneedles: revamping transdermal drug delivery systems.
Drug Deliv Transl Res. 2025 Feb;15(2):436-454. doi: 10.1007/s13346-024-01679-7. Epub 2024 Aug 5.
9
The Role of 3D Printing Technology in Microengineering of Microneedles.
Small. 2022 May;18(18):e2106392. doi: 10.1002/smll.202106392. Epub 2022 Mar 31.

引用本文的文献

1
Microneedles in diabetic wound care: multifunctional solutions for enhanced healing.
Burns Trauma. 2025 Feb 14;13:tkae076. doi: 10.1093/burnst/tkae076. eCollection 2025.

本文引用的文献

1
Three-Dimensional Printable Magnetic Microfibers: Development and Characterization for Four-Dimensional Printing.
3D Print Addit Manuf. 2024 Apr 1;11(2):e638-e654. doi: 10.1089/3dp.2022.0103. Epub 2024 Apr 16.
5
Microfabrication of polymer microneedle arrays using two-photon polymerization.
J Photochem Photobiol B. 2022 Apr;229:112424. doi: 10.1016/j.jphotobiol.2022.112424. Epub 2022 Mar 4.
6
Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
Pharmaceutics. 2021 Nov 2;13(11):1837. doi: 10.3390/pharmaceutics13111837.
7
High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays.
Microsyst Nanoeng. 2021 Sep 3;7:71. doi: 10.1038/s41378-021-00298-3. eCollection 2021.
8
Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
Microsyst Nanoeng. 2021 Aug 2;7:58. doi: 10.1038/s41378-021-00284-9. eCollection 2021.
9
Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate.
Drug Deliv Transl Res. 2022 May;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4. Epub 2021 May 22.
10
3D-printed microneedles in biomedical applications.
iScience. 2020 Dec 31;24(1):102012. doi: 10.1016/j.isci.2020.102012. eCollection 2021 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验