Suppr超能文献

基于带有重构正则化的深度学习对青少年流体智力分数的预测

Prediction of Adolescents' Fluid Intelligence Scores based on Deep Learning with Reconstruction Regularization.

作者信息

Cao TingQian, Liu Xiang, Luo Jiawei, Wang Yuqiang, Huang Shixin

机构信息

West China Hospital of Sichuan University.

Sichuan University.

出版信息

Res Sq. 2024 Jun 18:rs.3.rs-4482953. doi: 10.21203/rs.3.rs-4482953/v1.

Abstract

OBJECTIVE

The aim of this study was to develop a predictive model for uncorrected/actual fluid intelligence scores in 9-10 year old children using magnetic resonance T1-weighted imaging. Explore the predictive performance of an autoencoder model based on reconstruction regularization for fluid intelligence in adolescents.

METHODS

We collected actual fluid intelligence scores and T1-weighted MRIs of 11,534 adolescents who completed baseline tasks from ABCD Data Release 3.0. A total of 148 ROIs were selected and 604 features were proposed by FreeSurfer segmentation. The training and testing sets were divided in a ratio of 7:3. To predict fluid intelligence scores, we used AE, MLP and classic machine learning models, and compared their performance on the test set. In addition, we explored their performance across gender subpopulations. Moreover, we evaluated the importance of features using the SHapley Additive Explain method. Results: The proposed model achieves optimal performance on the test set for predicting actual fluid intelligence scores (PCC = 0.209 ± 0.02, MSE = 105.212 ± 2.53). Results show that autoencoders with refactoring regularization are significantly more effective than MLPs and classical machine learning models. In addition, all models performed better on female adolescents than on male adolescents. Further analysis of relevant characteristics in different populations revealed that this may be related to gender differences in underlying fluid intelligence mechanisms.

CONCLUSIONS

We construct a weak but stable correlation between brain structural features and raw fluid intelligence using autoencoders. Future research may need to explore ensemble regression strategies utilizing multiple machine learning algorithms on multimodal data in order to improve the predictive performance of fluid intelligence based on neuroimaging features.

摘要

目的

本研究旨在利用磁共振T1加权成像开发一个预测9至10岁儿童未校正/实际流体智力分数的模型。探索基于重建正则化的自动编码器模型对青少年流体智力的预测性能。

方法

我们收集了来自ABCD数据发布3.0中完成基线任务的11534名青少年的实际流体智力分数和T1加权磁共振图像。通过FreeSurfer分割选择了总共148个感兴趣区域(ROI)并提出了604个特征。训练集和测试集按7:3的比例划分。为了预测流体智力分数,我们使用了自动编码器(AE)、多层感知器(MLP)和经典机器学习模型,并在测试集上比较了它们的性能。此外,我们还探索了它们在不同性别亚群体中的性能。此外,我们使用Shapley加法解释方法评估了特征的重要性。结果:所提出的模型在预测实际流体智力分数的测试集上实现了最佳性能(皮尔逊相关系数PCC = 0.209 ± 0.02,均方误差MSE = 105.212 ± 2.53)。结果表明,具有重构正则化的自动编码器比MLP和经典机器学习模型显著更有效。此外,所有模型在女性青少年上的表现都优于男性青少年。对不同人群中相关特征的进一步分析表明,这可能与潜在流体智力机制的性别差异有关。

结论

我们使用自动编码器构建了大脑结构特征与原始流体智力之间微弱但稳定的相关性。未来的研究可能需要探索在多模态数据上利用多种机器学习算法的集成回归策略,以提高基于神经影像特征的流体智力预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f49/11213224/2d5d75647237/nihpp-rs4482953v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验