Yang Yanda, Kirmizitas Fatma Ceren, Sokolich Max, Valencia Alejandra, Rivas David, Karakan M Çağatay, White Alice E, Malikopoulos Andreas A, Das Sambeeta
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA.
Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294113. Epub 2023 Oct 31.
Microrobots, untethered miniature devices capable of performing tasks at the microscale, have gained significant attention in the fields of robotics and biomedicine. These devices hold immense potential for various industrial and scientific applications, including targeted drug delivery and cell manipulation. In this study, we present a novel magnetic rolling helical microrobot specifically designed for bio-compatible cell patterning. Our microrobot incorporates both open-loop and closed-loop control mechanisms, providing flexible, precise, and rapid control for various applications. Through experiments, we demonstrate the microrobot's ability to manipulate cells by pushing them while rolling and arranging cells into desired patterns. This result is particularly significant as it has implications for diverse biological applications such as tissue engineering and organoid development. Moreover, we showcase the effectiveness of our microrobot in a closed-loop control system, where it successfully follows a predetermined path from an origin to a destination. The combination of cellular manipulation capabilities and trajectory-tracking performance underlines the versatility and potential of our magnetic rolling helical microrobot. The ability to control and navigate the microrobot with high precision opens up new possibilities for advanced biomedical applications. These findings contribute to the growing body of knowledge in microbotics and pave the way for further research and development in the field.
微型机器人,即能够在微观尺度上执行任务的无系绳微型设备,在机器人技术和生物医学领域受到了广泛关注。这些设备在各种工业和科学应用中具有巨大潜力,包括靶向药物递送和细胞操作。在本研究中,我们展示了一种专门为生物相容性细胞图案化设计的新型磁性滚动螺旋微型机器人。我们的微型机器人结合了开环和闭环控制机制,为各种应用提供灵活、精确和快速的控制。通过实验,我们证明了微型机器人在滚动时推动细胞并将细胞排列成所需图案的细胞操作能力。这一结果尤为重要,因为它对组织工程和类器官发育等多种生物学应用具有重要意义。此外,我们展示了我们的微型机器人在闭环控制系统中的有效性,它成功地从起点沿着预定路径到达终点。细胞操作能力和轨迹跟踪性能的结合突出了我们的磁性滚动螺旋微型机器人的多功能性和潜力。高精度控制和导航微型机器人的能力为先进的生物医学应用开辟了新的可能性。这些发现为微型机器人技术的知识体系增添了内容,并为该领域的进一步研究和发展铺平了道路。