Suppr超能文献

用于细胞图案化的滚动螺旋微型机器人。

Rolling Helical Microrobots for Cell Patterning.

作者信息

Yang Yanda, Kirmizitas Fatma Ceren, Sokolich Max, Valencia Alejandra, Rivas David, Karakan M Çağatay, White Alice E, Malikopoulos Andreas A, Das Sambeeta

机构信息

Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA.

Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA.

出版信息

Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294113. Epub 2023 Oct 31.

Abstract

Microrobots, untethered miniature devices capable of performing tasks at the microscale, have gained significant attention in the fields of robotics and biomedicine. These devices hold immense potential for various industrial and scientific applications, including targeted drug delivery and cell manipulation. In this study, we present a novel magnetic rolling helical microrobot specifically designed for bio-compatible cell patterning. Our microrobot incorporates both open-loop and closed-loop control mechanisms, providing flexible, precise, and rapid control for various applications. Through experiments, we demonstrate the microrobot's ability to manipulate cells by pushing them while rolling and arranging cells into desired patterns. This result is particularly significant as it has implications for diverse biological applications such as tissue engineering and organoid development. Moreover, we showcase the effectiveness of our microrobot in a closed-loop control system, where it successfully follows a predetermined path from an origin to a destination. The combination of cellular manipulation capabilities and trajectory-tracking performance underlines the versatility and potential of our magnetic rolling helical microrobot. The ability to control and navigate the microrobot with high precision opens up new possibilities for advanced biomedical applications. These findings contribute to the growing body of knowledge in microbotics and pave the way for further research and development in the field.

摘要

微型机器人,即能够在微观尺度上执行任务的无系绳微型设备,在机器人技术和生物医学领域受到了广泛关注。这些设备在各种工业和科学应用中具有巨大潜力,包括靶向药物递送和细胞操作。在本研究中,我们展示了一种专门为生物相容性细胞图案化设计的新型磁性滚动螺旋微型机器人。我们的微型机器人结合了开环和闭环控制机制,为各种应用提供灵活、精确和快速的控制。通过实验,我们证明了微型机器人在滚动时推动细胞并将细胞排列成所需图案的细胞操作能力。这一结果尤为重要,因为它对组织工程和类器官发育等多种生物学应用具有重要意义。此外,我们展示了我们的微型机器人在闭环控制系统中的有效性,它成功地从起点沿着预定路径到达终点。细胞操作能力和轨迹跟踪性能的结合突出了我们的磁性滚动螺旋微型机器人的多功能性和潜力。高精度控制和导航微型机器人的能力为先进的生物医学应用开辟了新的可能性。这些发现为微型机器人技术的知识体系增添了内容,并为该领域的进一步研究和发展铺平了道路。

相似文献

1
Rolling Helical Microrobots for Cell Patterning.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294113. Epub 2023 Oct 31.
2
Cellular Manipulation Using Rolling Microrobots.
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870486. Epub 2022 Sep 2.
3
A Tumbling Magnetic Microrobot System for Biomedical Applications.
Micromachines (Basel). 2020 Sep 17;11(9):861. doi: 10.3390/mi11090861.
4
Programmable Modular Acoustic Microrobots.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294125. Epub 2023 Oct 31.
5
Closed Loop Control of Bubble-Propelled Microrobots.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294166. Epub 2023 Oct 31.
7
Automatic Path Tracking and Target Manipulation of a Magnetic Microrobot.
Micromachines (Basel). 2016 Nov 23;7(11):212. doi: 10.3390/mi7110212.
8
Programmable acoustic modular microrobots.
J Microbio Robot. 2024;20(2):11. doi: 10.1007/s12213-024-00175-y. Epub 2024 Aug 3.
9
Acoustically powered surface-slipping mobile microrobots.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3469-3477. doi: 10.1073/pnas.1920099117. Epub 2020 Feb 3.
10
A Review of Microrobot's System: Towards System Integration for Autonomous Actuation In Vivo.
Micromachines (Basel). 2021 Oct 15;12(10):1249. doi: 10.3390/mi12101249.

引用本文的文献

1
Alginate Sphere-Based Soft Actuators.
Gels. 2025 Jun 5;11(6):432. doi: 10.3390/gels11060432.
2
Quadrupole Magnetic Tweezers for Precise Cell Transportation.
IEEE Trans Biomed Eng. 2025 Apr;72(4):1437-1444. doi: 10.1109/TBME.2024.3509313. Epub 2025 Mar 21.
3
Programmable acoustic modular microrobots.
J Microbio Robot. 2024;20(2):11. doi: 10.1007/s12213-024-00175-y. Epub 2024 Aug 3.

本文引用的文献

1
Fabrication and open-loop control of three-lobed nonspherical Janus microrobots.
MRS Adv. 2023 Nov;8(18):1028-1032. doi: 10.1557/s43580-023-00598-y. Epub 2023 Jun 14.
2
Spatial Patterning of Micromotor Aggregation and Flux.
ChemNanoMat. 2023 Aug;9(8). doi: 10.1002/cnma.202300225. Epub 2023 Jun 20.
3
Cellular Manipulation Using Rolling Microrobots.
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870486. Epub 2022 Sep 2.
4
A First-Order Approach to Model Simultaneous Control of Multiple Microrobots.
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870476. Epub 2022 Sep 2.
5
Role of Surface Tension in Microrobot Penetration in Membranes.
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870474. Epub 2022 Sep 2.
6
Doxorubicin-Loaded Microrobots for Targeted Drug Delivery and Anticancer Therapy.
Adv Healthc Mater. 2023 Nov;12(28):e2300939. doi: 10.1002/adhm.202300939. Epub 2023 Jul 9.
7
ModMag: A modular magnetic micro-robotic manipulation device.
MethodsX. 2023 Apr 3;10:102171. doi: 10.1016/j.mex.2023.102171. eCollection 2023.
8
Efficient Preparation of a Magnetic Helical Carbon Nanomotor for Targeted Anticancer Drug Delivery.
ACS Nanosci Au. 2022 Nov 25;3(1):94-102. doi: 10.1021/acsnanoscienceau.2c00042. eCollection 2023 Feb 15.
9
Multistimuli-responsive microrobots: A comprehensive review.
Front Robot AI. 2022 Nov 7;9:1027415. doi: 10.3389/frobt.2022.1027415. eCollection 2022.
10
Achieving Control in Micro-/Nanomotor Mobility.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202214754. doi: 10.1002/anie.202214754. Epub 2022 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验