Suppr超能文献

表面张力在微型机器人穿透膜中的作用。

Role of Surface Tension in Microrobot Penetration in Membranes.

作者信息

Rahman Md Mahmudur, Garudadri Tanmay, Das Sambeeta

机构信息

Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA. He is now with Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458 USA.

University of Delaware, Newark, DE 19716 USA.

出版信息

Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870474. Epub 2022 Sep 2.

Abstract

cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.

摘要

使用微型机器人进行细胞膜融合可能是一种将生物活性化合物递送至细胞系统的有用技术。膜曲率和脂质有序性在细胞膜穿透过程中的作用是众所周知的。然而,一旦细胞膜融合已经启动,基于微型机器人溶液的张力差和融合孔处的膜曲率的微型机器人穿透的流体动力学尚未得到探索。在此,我们展示了合并界面之间的表面张力差如何在微型机器人液滴穿透液体浴中发挥作用,以此模拟细胞膜融合。微型机器人液滴对液体浴的最大穿透取决于液滴与液体浴之间表面张力的正差值、桥接区域的纵向曲率以及液滴的大小。

相似文献

1
Role of Surface Tension in Microrobot Penetration in Membranes.
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870474. Epub 2022 Sep 2.
3
Micro-UFO (Untethered Floating Object): A Highly Accurate Microrobot Manipulation Technique.
Micromachines (Basel). 2018 Mar 14;9(3):126. doi: 10.3390/mi9030126.
4
Automatic Path Tracking and Target Manipulation of a Magnetic Microrobot.
Micromachines (Basel). 2016 Nov 23;7(11):212. doi: 10.3390/mi7110212.
5
An aquatic microrobot for microscale flow manipulation.
Sci Rep. 2022 Mar 23;12(1):5041. doi: 10.1038/s41598-022-07938-2.
6
Fish-like magnetic microrobots for microparts transporting at liquid surfaces.
Soft Matter. 2023 Apr 26;19(16):2883-2890. doi: 10.1039/d2sm01436j.
7
Solitary and Collective Motion Behaviors of Microrobots under the Coupling of Multiple Light Fields.
Micromachines (Basel). 2022 Dec 29;14(1):89. doi: 10.3390/mi14010089.
8
Bilayer Hydrogel Sheet-Type Intraocular Microrobot for Drug Delivery and Magnetic Nanoparticles Retrieval.
Adv Healthc Mater. 2020 Jul;9(13):e2000118. doi: 10.1002/adhm.202000118. Epub 2020 May 19.
9
Multimodal Bubble Microrobot Near an Air-Water Interface.
Small. 2022 Sep;18(39):e2203872. doi: 10.1002/smll.202203872. Epub 2022 Aug 31.
10
Stabilization of Microrobot Motion Characteristics in Liquid Media.
Micromachines (Basel). 2018 Jul 23;9(7):363. doi: 10.3390/mi9070363.

引用本文的文献

1
Magnetic Microrobots as a Platform for Cell Clean Up.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294141. Epub 2023 Oct 31.
2
Closed Loop Control of Bubble-Propelled Microrobots.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294166. Epub 2023 Oct 31.
3
Rolling Helical Microrobots for Cell Patterning.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294113. Epub 2023 Oct 31.
4
Programmable Modular Acoustic Microrobots.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294125. Epub 2023 Oct 31.

本文引用的文献

1
Membrane tension may define the deadliest virus infection.
Colloid Interface Sci Commun. 2021 Jan;40:100338. doi: 10.1016/j.colcom.2020.100338. Epub 2020 Nov 23.
2
Cell-Like Micromotors.
Acc Chem Res. 2018 Sep 18;51(9):1901-1910. doi: 10.1021/acs.accounts.8b00202. Epub 2018 Aug 3.
3
Cell Membrane Coating Nanotechnology.
Adv Mater. 2018 Jun;30(23):e1706759. doi: 10.1002/adma.201706759. Epub 2018 Mar 27.
4
Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity.
Langmuir. 2018 Feb 27;34(8):2654-2662. doi: 10.1021/acs.langmuir.7b03936. Epub 2018 Feb 12.
5
SARS-CoV fusion peptides induce membrane surface ordering and curvature.
Sci Rep. 2016 Nov 28;6:37131. doi: 10.1038/srep37131.
6
Coalescence of bubbles and drops in an outer fluid.
Nat Commun. 2014;5:3182. doi: 10.1038/ncomms4182.
7
Viscous to inertial crossover in liquid drop coalescence.
Phys Rev Lett. 2011 Mar 18;106(11):114501. doi: 10.1103/PhysRevLett.106.114501. Epub 2011 Mar 14.
8
Protein-lipid interplay in fusion and fission of biological membranes.
Annu Rev Biochem. 2003;72:175-207. doi: 10.1146/annurev.biochem.72.121801.161504.
9
Membrane fusion and exocytosis.
Annu Rev Biochem. 1999;68:863-911. doi: 10.1146/annurev.biochem.68.1.863.
10
The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition.
Biophys J. 1995 Sep;69(3):922-9. doi: 10.1016/S0006-3495(95)79966-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验