文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

稳定的肽组装纳米酶模拟双重抗真菌作用。

Stable peptide-assembled nanozyme mimicking dual antifungal actions.

机构信息

Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.

CAS Engineering Laboratory for Nanozyme, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

出版信息

Nat Commun. 2024 Jul 5;15(1):5636. doi: 10.1038/s41467-024-50094-6.


DOI:10.1038/s41467-024-50094-6
PMID:38965232
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11224359/
Abstract

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical β-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.

摘要

天然抗菌肽 (AMPs) 和酶 (AMEs) 是很有前途的非抗生素候选物,可以对抗抗微生物药物耐药性,但它们的效率低,稳定性差。在这里,我们通过从头设计和肽组装,开发了模仿 AMPs 和 AMEs 作用模式的肽纳米酶。通过建模,提出了 IHIHICI 的最小构建模块,该模块通过将 AMPs 和 AMEs 中的关键氨基酸与疏水性异亮氨酸结合来进行组装。实验验证表明,IHIHICI 可以在醋酸盐的调节下组装成螺旋 β-折叠纳米管,并通过镍配位表现出类磷脂酶 C 和过氧化物酶样活性,具有高热稳定性和抗酶降解能力。组装的纳米管表现出级联抗真菌作用,包括外层甘露聚糖对接、细胞壁破坏、脂质过氧化和随后的铁死亡,在消毒垫上 10 分钟内协同杀死超过 90%的白色念珠菌。这些发现为开发具有多种抗菌作用模式的材料提供了一种有效的从头设计策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/243b53437110/41467_2024_50094_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/8b8450e3f63a/41467_2024_50094_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/0272608e77e7/41467_2024_50094_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/a749fc96ae95/41467_2024_50094_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/a729706eb1ee/41467_2024_50094_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/853ec466c16b/41467_2024_50094_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/5270e63d0fd7/41467_2024_50094_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/243b53437110/41467_2024_50094_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/8b8450e3f63a/41467_2024_50094_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/0272608e77e7/41467_2024_50094_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/a749fc96ae95/41467_2024_50094_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/a729706eb1ee/41467_2024_50094_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/853ec466c16b/41467_2024_50094_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/5270e63d0fd7/41467_2024_50094_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/11224359/243b53437110/41467_2024_50094_Fig7_HTML.jpg

相似文献

[1]
Stable peptide-assembled nanozyme mimicking dual antifungal actions.

Nat Commun. 2024-7-5

[2]
How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility?

J Colloid Interface Sci. 2022-2-15

[3]
Activity and mechanism of action of antimicrobial peptide ACPs against Candida albicans.

Life Sci. 2024-8-1

[4]
Chemical modification, structure elucidation and antifungal mechanism studies of a peptide extracted from garlic (Allium sativum L.).

J Sci Food Agric. 2024-10

[5]
Fatty acid modification of antimicrobial peptide CGA-N9 and the combats against Candida albicans infection.

Biochem Pharmacol. 2023-5

[6]
Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans.

Peptides. 2011-6-13

[7]
Antifungal activity of a β-peptide in synthetic urine media: Toward materials-based approaches to reducing catheter-associated urinary tract fungal infections.

Acta Biomater. 2016-10-1

[8]
Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical β-Peptides To Prevent Candida albicans Biofilm Formation.

Antimicrob Agents Chemother. 2019-8-23

[9]
Effect of tryptophan position and lysine/arginine substitution in antimicrobial peptides on antifungal action.

Biochem Biophys Res Commun. 2024-4-16

[10]
Mechanism of action of novel synthetic dodecapeptides against Candida albicans.

Biochim Biophys Acta. 2013-11

引用本文的文献

[1]
Intelligent nanozymes: Biomimetic design, mechanisms and biomedical applications.

Fundam Res. 2024-12-3

[2]
Stimuli-responsive nanozymes for wound healing: From design strategies to therapeutic advances.

Mater Today Bio. 2025-7-2

[3]
Nanozymes: An emerging arsenal for the treatment of infection.

Fundam Res. 2025-1-9

[4]
Peptide-assembled nanozymes: a promising strategy to combat antimicrobial resistance.

Biomater Transl. 2025-3-25

[5]
Advanced Peptide Nanozymes with Dual Antifungal Mechanisms: Cutting-Edge Innovations in Combatting Antimicrobial Resistance.

Curr Microbiol. 2025-1-30

[6]
The Role and Mechanisms of Antimicrobial Peptides in Overcoming Multidrug-Resistant Bacteria.

Molecules. 2024-12-31

[7]
Nanozymes: a bibliometrics review.

J Nanobiotechnology. 2024-11-13

[8]
Peptide nanozymes: An emerging direction for functional enzyme mimics.

Bioact Mater. 2024-9-4

本文引用的文献

[1]
What can AlphaFold do for antimicrobial amyloids?

Proteins. 2024-2

[2]
Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish.

Sci Total Environ. 2023-2-1

[3]
Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective.

Chempluschem. 2022-12

[4]
Expression strategies for the efficient synthesis of antimicrobial peptides in plastids.

Nat Commun. 2022-10-4

[5]
Innate immune responses against the fungal pathogen Candida auris.

Nat Commun. 2022-6-21

[6]
A bottom-up view of antimicrobial resistance transmission in developing countries.

Nat Microbiol. 2022-6

[7]
Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance.

Antibiotics (Basel). 2022-3-15

[8]
Identification of antimicrobial peptides from the human gut microbiome using deep learning.

Nat Biotechnol. 2022-6

[9]
Data-informed discovery of hydrolytic nanozymes.

Nat Commun. 2022-2-11

[10]
The staggering death toll of drug-resistant bacteria.

Nature. 2022-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索