Tuberculosis ward No.2, Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China.
Department of Tuberculosis control, Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Affiliated to Jianghan University, Wuhan, Hubei, China.
J Cell Mol Med. 2024 Jul;28(13):e18519. doi: 10.1111/jcmm.18519.
Cuproptosis plays an important role in cancer, but its role in lung cancer remains unknown. Transcriptional profiles, clinical details and mutation data were acquired from the Cancer Genome Atlas database through a variety of methods. The analysis of this publicly available data was comprehensively performed using R software along with its relevant packages, ensuring a thorough examination of the information. In this study, we conducted a detailed analysis of cuproptosis-related genes and lncRNA co-expression, identifying 129 relevant lncRNAs and establishing a prognostic model with four key lncRNAs (LINC00996, RPARP-AS1, SND1-IT1, TMPO-AS1). Utilizing data from TCGA and GEO databases, the model effectively categorized patients into high- and low-risk groups, showing significant survival differences. Correlation analysis highlighted specific relationships between individual lncRNAs and cuproptosis genes. Our survival analysis indicated a higher survival rate in the low-risk group across various cohorts. Additionally, the model's predictive accuracy was confirmed through independent prognostic analysis and ROC curve evaluations. Functional enrichment analysis revealed distinct biological pathways and immune functions between risk groups. Tumour mutation load analysis differentiated high- and low-risk groups by their mutation profiles. Drug sensitivity analysis and immune infiltration studies using the CIBERSORT algorithm further elucidated the potential treatment responses in different risk groups. This comprehensive evaluation underscores the significance of lncRNAs in cuproptosis and their potential as biomarkers for lung cancer prognosis and immune microenvironment.
铜死亡在癌症中发挥着重要作用,但它在肺癌中的作用尚不清楚。通过多种方法从癌症基因组图谱数据库中获取转录谱、临床细节和突变数据。使用 R 软件及其相关包对这些公开可用的数据进行了全面分析,确保对信息进行了彻底检查。在这项研究中,我们对铜死亡相关基因和 lncRNA 共表达进行了详细分析,确定了 129 个相关的 lncRNA,并建立了一个由四个关键 lncRNA(LINC00996、RPARP-AS1、SND1-IT1、TMPO-AS1)组成的预后模型。利用 TCGA 和 GEO 数据库的数据,该模型有效地将患者分为高风险和低风险组,显示出显著的生存差异。相关性分析突出了个别 lncRNA 与铜死亡基因之间的特定关系。我们的生存分析表明,在各种队列中,低风险组的生存率更高。此外,通过独立预后分析和 ROC 曲线评估验证了该模型的预测准确性。功能富集分析揭示了风险组之间不同的生物学途径和免疫功能。肿瘤突变负荷分析通过突变谱区分了高风险组和低风险组。使用 CIBERSORT 算法进行的药物敏感性分析和免疫浸润研究进一步阐明了不同风险组的潜在治疗反应。这种综合评估突显了 lncRNA 在铜死亡中的重要性及其作为肺癌预后和免疫微环境生物标志物的潜力。