Yang Shuai, Li Liqin, Zhu Renhuan, Luo Chao, Lu Xiong, Sun Mili, Xu Benchuan
Publicity and United Front Work Department, Nanchong Vocational College of Culture and Tourism, Nanchong, 637400, China.
Hotel Department, Nanchong Vocational College of Culture and Tourism, Nanchong, 637400, China.
Sci Rep. 2024 Jul 10;14(1):15984. doi: 10.1038/s41598-024-66742-2.
Land-use change is the main driver of carbon storage change in terrestrial ecosystems. Currently, domestic and international studies mainly focus on the impact of carbon storage changes on climate, while studies on the impact of land-use changes on carbon storage in complex terrestrial ecosystems are few. The Jialing River Basin (JRB), with a total area of ~ 160,000 km, diverse topography, and elevation differences exceeding 5 km, is an ideal case for understanding the complex interactions between land-use change and carbon storage dynamics. Taking the JRB as our study area, we analyzed land-use changes from 2000 to 2020. Subsequently, we simulated land-use patterns for business-as-usual (BAU), cropland protection (CP), and ecological priority (EP) scenarios in 2035 using the PLUS model. Additionally, we assessed carbon storage using the InVEST model. This approach helps us to accurately understand the carbon change processes in regional complex terrestrial ecosystems and to formulate scientifically informed land-use policies. The results revealed the following: (1) Cropland was the most dominant land-use type (LUT) in the region, and it was the only LUT experiencing net reduction, with 92.22% of newly designated construction land originating from cropland. (2) In the JRB, total carbon storage steadily decreased after 2005, with significant spatial heterogeneity. This pattern was marked by higher carbon storage levels in the north and lower levels in the south, with a distinct demarcation line. The conversion of cropland to construction land is the main factor driving the reduction in carbon storage. (3) Compared with the BAU and EP scenarios, the CP scenario demonstrated a smaller reduction in cropland area, a smaller addition to construction land area, and a lower depletion in the JRB total carbon storage from 2020 to 2035. This study demonstrates the effectiveness of the PLUS and InVEST models in analyzing complex ecosystems and offers data support for quantitatively assessing regional ecosystem services. Strict adherence to the cropland replenishment task mandated by the Chinese government is crucial to increase cropland areas in the JRB and consequently enhance the carbon sequestration capacity of its ecosystem. Such efforts are vital for ensuring the food and ecological security of the JRB, particularly in the pursuit of the "dual-carbon" objective.
土地利用变化是陆地生态系统碳储量变化的主要驱动因素。目前,国内外研究主要聚焦于碳储量变化对气候的影响,而关于土地利用变化对复杂陆地生态系统碳储量影响的研究较少。嘉陵江流域(JRB)总面积约160,000平方千米,地形多样,海拔差异超过5千米,是理解土地利用变化与碳储量动态复杂相互作用的理想案例。以嘉陵江流域为研究区域,我们分析了2000年至2020年的土地利用变化。随后,我们使用PLUS模型模拟了2035年照常营业(BAU)、耕地保护(CP)和生态优先(EP)情景下的土地利用模式。此外,我们使用InVEST模型评估了碳储量。这种方法有助于我们准确理解区域复杂陆地生态系统中的碳变化过程,并制定科学合理的土地利用政策。结果表明:(1)耕地是该区域最主要的土地利用类型(LUT),且是唯一面积净减少的LUT,新划定建设用地的92.22%源自耕地。(2)在嘉陵江流域,2005年后总碳储量稳步下降,具有显著的空间异质性。这种模式表现为北部碳储量水平较高,南部较低,且有明显的分界线。耕地向建设用地的转变是碳储量减少的主要驱动因素。(3)与BAU和EP情景相比,CP情景在2020年至2035年期间,耕地面积减少幅度较小,建设用地面积增加幅度较小,嘉陵江流域总碳储量的损耗也较低。本研究证明了PLUS和InVEST模型在分析复杂生态系统方面的有效性,并为定量评估区域生态系统服务提供了数据支持。严格执行中国政府规定的耕地补充任务对于增加嘉陵江流域的耕地面积从而提高其生态系统的碳固存能力至关重要。这些努力对于确保嘉陵江流域的粮食和生态安全至关重要,特别是在追求“双碳”目标的过程中。