Suppr超能文献

基于物理和深度学习的蛋白质工程筛选方法解析:以用于工业底物水解的脂肪酶为例的研究

Resolution of physics and deep learning-based protein engineering filters: A case study with a lipase for industrial substrate hydrolysis.

作者信息

Gardiner Spencer, Dollinger Peter, Kovacic Filip, Pietruszka Jörg, Ess Daniel H, Jaeger Karl-Erich, Schröder Gunnar F, Della Corte Dennis

机构信息

Department of Physics and Astronomy, Brigham Young University, Provo, Utah, United States of America.

Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.

出版信息

PLoS One. 2025 Sep 12;20(9):e0332409. doi: 10.1371/journal.pone.0332409. eCollection 2025.

Abstract

Computational enzyme design remains a powerful yet imperfect tool for optimizing biocatalysts, especially when targeting non-natural substrates. Using design tools we investigated Pseudomonas aeruginosa LipA, a lipase with a flexible lid domain crucial for substrate binding and turnover, aiming to enhance its hydrolysis of the industrially relevant substrate Roche ester. We generated an initial set of single-point mutations based on structural proximity to the active site and evaluated their effects using a computational pipeline integrating molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and ensemble-based energy scoring. While we identified several active variants, attempts to rank them by activity using structural features, such as hydrogen bond formation or residue flexibility, failed. Deep learning models, applied post hoc for structural analysis via AlphaFold3, produced nearly identical active site geometries across variants, irrespective of activity. Reaction pathway analysis revealed energy barriers varying by 5-15 kcal/mol depending on substrate conformation, with the nucleophile addition step consistently rate-limiting. However, these small energetic shifts, likely critical for incremental activity changes, were indistinguishable by current computational or deep learning methods. Our results highlight the limitations of existing approaches in resolving subtle functional differences and underscore the need for improved benchmarks, reactive force fields, and more sensitive ranking metrics. Advancing these areas will be essential for designing enzymes with gradual, evolution-like activity improvements and for bridging the gap between structural prediction and catalytic function.

摘要

计算酶设计仍然是优化生物催化剂的一个强大但并不完美的工具,尤其是在针对非天然底物时。利用设计工具,我们研究了铜绿假单胞菌脂肪酶LipA,它具有一个对底物结合和周转至关重要的灵活盖子结构域,旨在增强其对工业相关底物罗氏酯的水解作用。我们基于与活性位点的结构接近性生成了一组初始单点突变,并使用一个整合了分子动力学(MD)模拟、密度泛函理论(DFT)计算和基于系综的能量评分的计算流程来评估它们的效果。虽然我们鉴定出了几个活性变体,但试图利用诸如氢键形成或残基灵活性等结构特征按活性对它们进行排序却失败了。通过AlphaFold3事后应用于结构分析的深度学习模型,在各个变体中产生了几乎相同的活性位点几何结构,而与活性无关。反应途径分析表明,根据底物构象,能垒变化为5 - 15千卡/摩尔,亲核试剂加成步骤始终是限速步骤。然而,这些小的能量变化,可能对活性的渐进变化至关重要,目前的计算方法或深度学习方法却无法区分。我们的结果突出了现有方法在解决细微功能差异方面的局限性,并强调了改进基准、反应力场和更敏感的排序指标的必要性。在这些领域取得进展对于设计具有渐进式、类似进化的活性改进的酶以及弥合结构预测与催化功能之间的差距至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c14d/12431253/2cda16386ba6/pone.0332409.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验