文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在RECOVER电子健康记录队列中识别长新冠的风险因素及预测建模

Identification of risk factors of Long COVID and predictive modeling in the RECOVER EHR cohorts.

作者信息

Zang Chengxi, Hou Yu, Schenck Edward J, Xu Zhenxing, Zhang Yongkang, Xu Jie, Bian Jiang, Morozyuk Dmitry, Khullar Dhruv, Nordvig Anna S, Shenkman Elizabeth A, Rothman Russell L, Block Jason P, Lyman Kristin, Zhang Yiye, Varma Jay, Weiner Mark G, Carton Thomas W, Wang Fei, Kaushal Rainu

机构信息

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

Division of Pulmonary and Critical Care Medicine, Weill Cornell Department of Medicine, New York, NY, USA.

出版信息

Commun Med (Lond). 2024 Jul 11;4(1):130. doi: 10.1038/s43856-024-00549-0.


DOI:10.1038/s43856-024-00549-0
PMID:38992068
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11239808/
Abstract

BACKGROUND: SARS-CoV-2-infected patients may develop new conditions in the period after the acute infection. These conditions, the post-acute sequelae of SARS-CoV-2 infection (PASC, or Long COVID), involve a diverse set of organ systems. Limited studies have investigated the predictability of Long COVID development and its associated risk factors. METHODS: In this retrospective cohort study, we used electronic healthcare records from two large-scale PCORnet clinical research networks, INSIGHT (1.4 million patients from New York) and OneFlorida+ (0.7 million patients from Florida), to identify factors associated with having Long COVID, and to develop machine learning-based models for predicting Long COVID development. Both SARS-CoV-2-infected and non-infected adults were analysed during the period of March 2020 to November 2021. Factors associated with Long COVID risk were identified by removing background associations and correcting for multiple tests. RESULTS: We observed complex association patterns between baseline factors and a variety of Long COVID conditions, and we highlight that severe acute SARS-CoV-2 infection, being underweight, and having baseline comorbidities (e.g., cancer and cirrhosis) are likely associated with increased risk of developing Long COVID. Several Long COVID conditions, e.g., dementia, malnutrition, chronic obstructive pulmonary disease, heart failure, PASC diagnosis U099, and acute kidney failure are well predicted (C-index > 0.8). Moderately predictable conditions include atelectasis, pulmonary embolism, diabetes, pulmonary fibrosis, and thromboembolic disease (C-index 0.7-0.8). Less predictable conditions include fatigue, anxiety, sleep disorders, and depression (C-index around 0.6). CONCLUSIONS: This observational study suggests that association patterns between investigated factors and Long COVID are complex, and the predictability of different Long COVID conditions varies. However, machine learning-based predictive models can help in identifying patients who are at risk of developing a variety of Long COVID conditions.

摘要

背景:新型冠状病毒2型(SARS-CoV-2)感染患者在急性感染后的一段时间内可能会出现新的病症。这些病症即SARS-CoV-2感染的急性后遗症(PASC,或长新冠),涉及多种器官系统。仅有有限的研究调查了长新冠发生的可预测性及其相关风险因素。 方法:在这项回顾性队列研究中,我们使用了来自两个大型PCORnet临床研究网络(INSIGHT,约140万名来自纽约的患者;以及OneFlorida+,约70万名来自佛罗里达的患者)的电子医疗记录,以确定与长新冠相关的因素,并开发基于机器学习的模型来预测长新冠的发生。在2020年3月至2021年11月期间,对SARS-CoV-2感染和未感染的成年人进行了分析。通过消除背景关联并校正多重检验,确定了与长新冠风险相关的因素。 结果:我们观察到基线因素与多种长新冠病症之间存在复杂的关联模式,并且我们强调,严重的急性SARS-CoV-2感染、体重过轻以及患有基线合并症(如癌症和肝硬化)可能与长新冠发生风险增加相关。几种长新冠病症,如痴呆、营养不良、慢性阻塞性肺疾病、心力衰竭、PASC诊断U099以及急性肾衰竭,具有良好的预测性(C指数>0.8)。中等可预测的病症包括肺不张、肺栓塞、糖尿病、肺纤维化和血栓栓塞性疾病(C指数0.7 - 0.8)。可预测性较低的病症包括疲劳、焦虑、睡眠障碍和抑郁(C指数约为0.6)。 结论:这项观察性研究表明,所调查因素与长新冠之间的关联模式复杂,并且不同长新冠病症的可预测性各不相同。然而,基于机器学习的预测模型有助于识别有发生多种长新冠病症风险的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/a0e0a6decd93/43856_2024_549_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/2f26ea2d8ecc/43856_2024_549_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/bfea19f177b4/43856_2024_549_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/5183a7a8d858/43856_2024_549_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/a0e0a6decd93/43856_2024_549_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/2f26ea2d8ecc/43856_2024_549_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/bfea19f177b4/43856_2024_549_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/5183a7a8d858/43856_2024_549_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4693/11239808/a0e0a6decd93/43856_2024_549_Fig4_HTML.jpg

相似文献

[1]
Identification of risk factors of Long COVID and predictive modeling in the RECOVER EHR cohorts.

Commun Med (Lond). 2024-7-11

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[4]
Multidisciplinary collaborative guidance on the assessment and treatment of patients with Long COVID: A compendium statement.

PM R. 2025-4-22

[5]
Effect of Paxlovid Treatment During Acute Covid-19 on Long Covid Onset: An EHR-Based Target Trial Emulation from the N3C and RECOVER Consortia.

medRxiv. 2025-4-7

[6]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[7]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[8]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[9]
Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-10-14

[10]
Sexual Harassment and Prevention Training

2025-1

引用本文的文献

[1]
SatHealth: A Multimodal Public Health Dataset with Satellite-based Environmental Factors.

KDD. 2025-8

[2]
Neuroimmune pathophysiology of long COVID.

Psychiatry Clin Neurosci. 2025-6-19

[3]
Association of Physical Activity from Wearable Devices and Chronic Disease Risk: Insights from the All of Us Research Program.

Res Sq. 2025-5-7

[4]
Long COVID after SARS-CoV-2 during pregnancy in the United States.

Nat Commun. 2025-4-1

[5]
Wearable data reveals distinct characteristics of individuals with persistent symptoms after a SARS-CoV-2 infection.

NPJ Digit Med. 2025-3-19

[6]
Risk of long covid in patients with pre-existing chronic respiratory diseases: a systematic review and meta-analysis.

BMJ Open Respir Res. 2025-1-30

[7]
Coronavirus Disease 2019 (COVID-19) Real World Data Infrastructure: A Big-Data Resource for Study of the Impact of COVID-19 in Patient Populations With Immunocompromising Conditions.

Open Forum Infect Dis. 2025-1-23

[8]
Current update on the neurological manifestations of long COVID: more questions than answers.

EXCLI J. 2024-11-27

[9]
The utility of personal wearable data in long COVID and personalized patient care.

NPJ Digit Med. 2024-11-18

[10]
A short story of long COVID.

Wien Klin Wochenschr. 2024-11

本文引用的文献

[1]
Excess burden of respiratory and abdominal conditions following COVID-19 infections during the ancestral and Delta variant periods in the United States: An EHR-based cohort study from the RECOVER program.

PLoS One. 2024

[2]
Data-driven analysis to understand long COVID using electronic health records from the RECOVER initiative.

Nat Commun. 2023-4-7

[3]
Risk Factors Associated With Post-COVID-19 Condition: A Systematic Review and Meta-analysis.

JAMA Intern Med. 2023-6-1

[4]
Racial/Ethnic Disparities in Post-acute Sequelae of SARS-CoV-2 Infection in New York: an EHR-Based Cohort Study from the RECOVER Program.

J Gen Intern Med. 2023-4

[5]
Identifying environmental risk factors for post-acute sequelae of SARS-CoV-2 infection: An EHR-based cohort study from the recover program.

Environ Adv. 2023-4

[6]
Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes.

Nat Med. 2023-1

[7]
Factors Associated With Severe COVID-19 Among Vaccinated Adults Treated in US Veterans Affairs Hospitals.

JAMA Netw Open. 2022-10-3

[8]
Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis.

Int J Environ Res Public Health. 2022-9-29

[9]
Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review.

EClinicalMedicine. 2022-8-27

[10]
Long COVID and its associated factors among COVID survivors in the community from a middle-income country-An online cross-sectional study.

PLoS One. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索