Suppr超能文献

非洲各地 COVID-19 病例报告的决定因素。

The determinants of COVID-19 case reporting across Africa.

机构信息

Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Toronto, ON, Canada.

Department of Mathematics and Statistics, York University, Toronto, ON, Canada.

出版信息

Front Public Health. 2024 Jun 27;12:1406363. doi: 10.3389/fpubh.2024.1406363. eCollection 2024.

Abstract

BACKGROUND

According to study on the under-estimation of COVID-19 cases in African countries, the average daily case reporting rate was only 5.37% in the initial phase of the outbreak when there was little or no control measures. In this work, we aimed to identify the determinants of the case reporting and classify the African countries using the case reporting rates and the significant determinants.

METHODS

We used the COVID-19 daily case reporting rate estimated in the previous paper for 54 African countries as the response variable and 34 variables from demographics, socioeconomic, religion, education, and public health categories as the predictors. We adopted a generalized additive model with cubic spline for continuous predictors and linear relationship for categorical predictors to identify the significant covariates. In addition, we performed Hierarchical Clustering on Principal Components (HCPC) analysis on the reporting rates and significant continuous covariates of all countries.

RESULTS

21 covariates were identified as significantly associated with COVID-19 case detection: total population, urban population, median age, life expectancy, GDP, democracy index, corruption, voice accountability, social media, internet filtering, air transport, human development index, literacy, Islam population, number of physicians, number of nurses, global health security, malaria incidence, diabetes incidence, lower respiratory and cardiovascular diseases prevalence. HCPC resulted in three major clusters for the 54 African countries: northern, southern and central essentially, with the northern having the best early case detection, followed by the southern and the central.

CONCLUSION

Overall, northern and southern Africa had better early COVID-19 case identification compared to the central. There are a number of demographics, socioeconomic, public health factors that exhibited significant association with the early case detection.

摘要

背景

根据对非洲国家 COVID-19 病例低估的研究,在疫情初期,当几乎没有或没有采取控制措施时,平均每日病例报告率仅为 5.37%。在这项工作中,我们旨在确定病例报告的决定因素,并使用病例报告率和显著决定因素对非洲国家进行分类。

方法

我们使用之前一篇论文中估计的 54 个非洲国家的 COVID-19 每日病例报告率作为因变量,以及人口统计学、社会经济、宗教、教育和公共卫生等 34 个变量作为预测变量。我们采用了具有三次样条的广义加性模型来处理连续预测变量,以及线性关系来处理分类预测变量,以确定显著的协变量。此外,我们对所有国家的报告率和显著连续协变量进行了层次聚类主成分分析(HCPC)。

结果

确定了 21 个协变量与 COVID-19 病例检测显著相关:总人口、城市人口、中位数年龄、预期寿命、国内生产总值、民主指数、腐败、声音问责制、社交媒体、互联网过滤、航空运输、人类发展指数、识字率、伊斯兰教人口、医生人数、护士人数、全球卫生安全、疟疾发病率、糖尿病发病率、下呼吸道和心血管疾病患病率。HCPC 将 54 个非洲国家分为三个主要集群:北部、南部和中部,北部的早期病例检测最佳,其次是南部和中部。

结论

总体而言,与中部相比,北非和南非的 COVID-19 早期病例识别能力更好。有一些人口统计学、社会经济、公共卫生因素与早期病例检测显著相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff50/11236565/ba4013216386/fpubh-12-1406363-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验