Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA.
Mikrochim Acta. 2024 Jul 12;191(8):463. doi: 10.1007/s00604-024-06520-z.
The intensifying global opioid crisis, majorly attributed to fentanyl (FT) and its analogs, has necessitated the development of rapid and ultrasensitive remote/on-site FT sensing modalities. However, current approaches for tracking FT exposure through wastewater-based epidemiology (WBE) are unadaptable, time-consuming, and require trained professionals. Toward developing an extended in situ wastewater opioid monitoring system, we have developed a screen-printed electrochemical FT sensor and integrated it with a customized submersible remote sensing probe. The sensor composition and design have been optimized to address the challenges for extended in situ FT monitoring. Specifically, ZIF-8 metal-organic framework (MOF)-derived mesoporous carbon (MPC) nanoparticles (NPs) are incorporated in the screen-printed carbon electrode (SPCE) transducer to improve FT accumulation and its electrocatalytic oxidation. A rapid (10 s) and sensitive square wave voltammetric (SWV) FT detection down to 9.9 µgL is thus achieved in aqueous buffer solution. A protective mixed-matrix membrane (MMM) has been optimized as the anti-fouling sensor coating to mitigate electrode passivation by FT oxidation products and enable long-term, intermittent FT monitoring. The unique MMM, comprising an insulating polyvinyl chloride (PVC) matrix and carboxyl-functionalized multi-walled carbon nanotubes (CNT-COOH) as semiconductive fillers, yielded highly stable FT sensor operation (> 95% normalized response) up to 10 h in domestic wastewater, and up to 4 h in untreated river water. This sensing platform enables wireless data acquisition on a smartphone via Bluetooth. Such effective remote operation of submersible opioid sensing probes could enable stricter surveillance of community water systems toward timely alerts, countermeasures, and legal enforcement.
不断加剧的全球阿片类药物危机主要归因于芬太尼 (FT) 及其类似物,这使得开发快速和超灵敏的远程/现场 FT 传感模式变得必要。然而,目前通过基于废水的流行病学 (WBE) 来追踪 FT 暴露的方法不适应、耗时且需要经过培训的专业人员。为了开发扩展的原位废水阿片类监测系统,我们开发了一种丝网印刷电化学 FT 传感器,并将其与定制的潜水远程传感探头集成在一起。传感器的组成和设计已得到优化,以解决原位 FT 监测的挑战。具体来说,ZIF-8 金属有机骨架 (MOF) 衍生的介孔碳 (MPC) 纳米颗粒 (NPs) 被纳入丝网印刷碳电极 (SPCE) 换能器中,以提高 FT 的积累及其电催化氧化。因此,在水溶液缓冲液中实现了快速 (10 s) 和灵敏的方波伏安法 (SWV) FT 检测,检测下限低至 9.9 µgL。优化了一种快速 (10 s) 和灵敏的方波伏安法 (SWV) FT 检测,检测下限低至 9.9 µgL。优化了一种快速 (10 s) 和灵敏的方波伏安法 (SWV) FT 检测,检测下限低至 9.9 µgL。优化了一种快速 (10 s) 和灵敏的方波伏安法 (SWV) FT 检测,检测下限低至 9.9 µgL。优化了一种快速 (10 s) 和灵敏的方波伏安法 (SWV) FT 检测,检测下限低至 9.9 µgL。优化了一种保护混合基质膜 (MMM) 作为抗污传感器涂层,以减轻 FT 氧化产物对电极的钝化作用,并实现长期间歇性 FT 监测。独特的 MMM 由绝缘聚氯乙烯 (PVC) 基质和作为半导体填充剂的羧基功能化多壁碳纳米管 (CNT-COOH) 组成,在家庭废水中可实现高达 10 h 的稳定 FT 传感器运行 (>95%归一化响应),在未经处理的河水则可实现长达 4 h 的稳定运行。该传感平台可通过蓝牙在智能手机上进行无线数据采集。这种对潜水式阿片类传感探头的有效远程操作,可以实现对社区供水系统的更严格监控,以便及时发出警报、采取对策和实施法律。