Okabe Ryotaro, Chotrattanapituk Abhijatmedhi, Boonkird Artittaya, Andrejevic Nina, Fu Xiang, Jaakkola Tommi S, Song Qichen, Nguyen Thanh, Drucker Nathan, Mu Sai, Wang Yao, Liao Bolin, Cheng Yongqiang, Li Mingda
Quantum Measurement Group, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Comput Sci. 2024 Jul;4(7):522-531. doi: 10.1038/s43588-024-00661-0. Epub 2024 Jul 12.
Understanding the structure-property relationship is crucial for designing materials with desired properties. The past few years have witnessed remarkable progress in machine-learning methods for this connection. However, substantial challenges remain, including the generalizability of models and prediction of properties with materials-dependent output dimensions. Here we present the virtual node graph neural network to address the challenges. By developing three virtual node approaches, we achieve Γ-phonon spectra and full phonon dispersion prediction from atomic coordinates. We show that, compared with the machine-learning interatomic potentials, our approach achieves orders-of-magnitude-higher efficiency with comparable to better accuracy. This allows us to generate databases for Γ-phonon containing over 146,000 materials and phonon band structures of zeolites. Our work provides an avenue for rapid and high-quality prediction of phonon band structures enabling materials design with desired phonon properties. The virtual node method also provides a generic method for machine-learning design with a high level of flexibility.
理解结构-性能关系对于设计具有所需性能的材料至关重要。在过去几年中,用于这种关联的机器学习方法取得了显著进展。然而,仍然存在重大挑战,包括模型的通用性以及具有材料依赖输出维度的性能预测。在此,我们提出虚拟节点图神经网络来应对这些挑战。通过开发三种虚拟节点方法,我们从原子坐标实现了Γ-声子谱和完整声子色散预测。我们表明,与机器学习原子间势相比,我们的方法在效率上提高了几个数量级,同时具有相当或更好的准确性。这使我们能够生成包含超过146,000种材料的Γ-声子数据库以及沸石的声子能带结构。我们的工作为声子能带结构的快速和高质量预测提供了一条途径,从而能够设计具有所需声子特性的材料。虚拟节点方法还为具有高度灵活性的机器学习设计提供了一种通用方法。