Suppr超能文献

本文引用的文献

1
Virtual node graph neural network for full phonon prediction.
Nat Comput Sci. 2024 Jul;4(7):522-531. doi: 10.1038/s43588-024-00661-0. Epub 2024 Jul 12.
2
Beyond MD17: the reactive xxMD dataset.
Sci Data. 2024 Feb 20;11(1):222. doi: 10.1038/s41597-024-03019-3.
3
Universal machine learning for the response of atomistic systems to external fields.
Nat Commun. 2023 Oct 12;14(1):6424. doi: 10.1038/s41467-023-42148-y.
4
Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries.
RSC Adv. 2018 Nov 26;8(69):39414-39420. doi: 10.1039/c8ra07112h. eCollection 2018 Nov 23.
5
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
Nat Commun. 2022 May 4;13(1):2453. doi: 10.1038/s41467-022-29939-5.
6
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.
Nat Commun. 2021 Dec 14;12(1):7273. doi: 10.1038/s41467-021-27504-0.
7
Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
J Phys Chem Lett. 2019 Sep 5;10(17):4962-4967. doi: 10.1021/acs.jpclett.9b02037. Epub 2019 Aug 14.
8
Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties.
Phys Rev Lett. 2018 Apr 6;120(14):145301. doi: 10.1103/PhysRevLett.120.145301.
9
Bypassing the Kohn-Sham equations with machine learning.
Nat Commun. 2017 Oct 11;8(1):872. doi: 10.1038/s41467-017-00839-3.
10
Machine learning of accurate energy-conserving molecular force fields.
Sci Adv. 2017 May 5;3(5):e1603015. doi: 10.1126/sciadv.1603015. eCollection 2017 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验