Suppr超能文献

通过扩展原子表示在等变网络中引入虚拟点以进行有效预测。

Introducing Virtual Points in Equivariant Networks by Extending Atom Representation for Effective Prediction.

作者信息

Kwak Bumju, Jo Jeonghee

机构信息

Independent researcher, Seoul 06611, Republic of Korea.

Independent researcher, Seoul 07795, Republic of Korea.

出版信息

J Chem Theory Comput. 2025 Sep 9;21(17):8468-8477. doi: 10.1021/acs.jctc.5c00701. Epub 2025 Aug 25.

Abstract

Recent equivariant models embed a molecule as a set of atoms fixed in three-dimensional space, which is analogous to a ball-and-stick view. This perspective provides a concise view of molecular configurations; however, these representations may be limited in incorporating the surrounding environments of atomic nuclei, including electron configurations. To overcome this limitation, we propose neural polarization (NP), a novel method that extends equivariant networks by embedding each atom as a pair of an atom and virtual points. Motivated by electron density configurations, NP represents each atom as a pair comprising the original fixed atom and a virtual atom whose position is updated through parameterization during model training. NP can be flexibly applied to most types of existing equivariant models. We showed that NP can improve the prediction performance of existing models over a wide range of targets, including electron density. Our experimental results on various benchmarks suggest new insights, indicating that the extended atomic representations can improve the overall molecular tasks.

摘要

最近的等变模型将分子嵌入为固定在三维空间中的一组原子,这类似于球棍模型。这种视角提供了分子构型的简洁视图;然而,这些表示在纳入原子核周围环境(包括电子构型)方面可能存在局限性。为了克服这一局限性,我们提出了神经极化(NP)方法,这是一种通过将每个原子嵌入为一个原子和虚拟点对来扩展等变网络的新方法。受电子密度构型的启发,NP将每个原子表示为一个对,该对由原始固定原子和一个虚拟原子组成,虚拟原子的位置在模型训练期间通过参数化进行更新。NP可以灵活地应用于大多数类型的现有等变模型。我们表明,NP可以在包括电子密度在内的广泛目标上提高现有模型的预测性能。我们在各种基准上的实验结果提出了新的见解,表明扩展的原子表示可以改善整体分子任务。

相似文献

10
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

1
Virtual node graph neural network for full phonon prediction.用于全声子预测的虚拟节点图神经网络。
Nat Comput Sci. 2024 Jul;4(7):522-531. doi: 10.1038/s43588-024-00661-0. Epub 2024 Jul 12.
2
Beyond MD17: the reactive xxMD dataset.超越 MD17:反应性 xxMD 数据集。
Sci Data. 2024 Feb 20;11(1):222. doi: 10.1038/s41597-024-03019-3.
9
Bypassing the Kohn-Sham equations with machine learning.利用机器学习绕过科恩-沈方程。
Nat Commun. 2017 Oct 11;8(1):872. doi: 10.1038/s41467-017-00839-3.
10
Machine learning of accurate energy-conserving molecular force fields.机器学习精准节能分子力场。
Sci Adv. 2017 May 5;3(5):e1603015. doi: 10.1126/sciadv.1603015. eCollection 2017 May.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验