Kwak Bumju, Jo Jeonghee
Independent researcher, Seoul 06611, Republic of Korea.
Independent researcher, Seoul 07795, Republic of Korea.
J Chem Theory Comput. 2025 Sep 9;21(17):8468-8477. doi: 10.1021/acs.jctc.5c00701. Epub 2025 Aug 25.
Recent equivariant models embed a molecule as a set of atoms fixed in three-dimensional space, which is analogous to a ball-and-stick view. This perspective provides a concise view of molecular configurations; however, these representations may be limited in incorporating the surrounding environments of atomic nuclei, including electron configurations. To overcome this limitation, we propose neural polarization (NP), a novel method that extends equivariant networks by embedding each atom as a pair of an atom and virtual points. Motivated by electron density configurations, NP represents each atom as a pair comprising the original fixed atom and a virtual atom whose position is updated through parameterization during model training. NP can be flexibly applied to most types of existing equivariant models. We showed that NP can improve the prediction performance of existing models over a wide range of targets, including electron density. Our experimental results on various benchmarks suggest new insights, indicating that the extended atomic representations can improve the overall molecular tasks.
最近的等变模型将分子嵌入为固定在三维空间中的一组原子,这类似于球棍模型。这种视角提供了分子构型的简洁视图;然而,这些表示在纳入原子核周围环境(包括电子构型)方面可能存在局限性。为了克服这一局限性,我们提出了神经极化(NP)方法,这是一种通过将每个原子嵌入为一个原子和虚拟点对来扩展等变网络的新方法。受电子密度构型的启发,NP将每个原子表示为一个对,该对由原始固定原子和一个虚拟原子组成,虚拟原子的位置在模型训练期间通过参数化进行更新。NP可以灵活地应用于大多数类型的现有等变模型。我们表明,NP可以在包括电子密度在内的广泛目标上提高现有模型的预测性能。我们在各种基准上的实验结果提出了新的见解,表明扩展的原子表示可以改善整体分子任务。