Suppr超能文献

对扰动的生物物理反应的随机建模

Stochastic Modeling of Biophysical Responses to Perturbation.

作者信息

Chari Tara, Gorin Gennady, Pachter Lior

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.

Fauna Bio, Emeryville, California.

出版信息

bioRxiv. 2024 Jul 5:2024.07.04.602131. doi: 10.1101/2024.07.04.602131.

Abstract

Recent advances in high-throughput, multi-condition experiments allow for genome-wide investigation of how perturbations affect transcription and translation in the cell across multiple biological entities or modalities, from chromatin and mRNA information to protein production and spatial morphology. This presents an unprecedented opportunity to unravel how the processes of DNA and RNA regulation direct cell fate determination and disease response. Most methods designed for analyzing large-scale perturbation data focus on the observational outcomes, e.g., expression; however, many potential transcriptional mechanisms, such as transcriptional bursting or splicing dynamics, can underlie these complex and noisy observations. In this analysis, we demonstrate how a stochastic biophysical modeling approach to interpreting high-throughout perturbation data enables deeper investigation of the 'how' behind such molecular measurements. Our approach takes advantage of modalities already present in data produced with current technologies, such as nascent and mature mRNA measurements, to illuminate transcriptional dynamics induced by perturbation, predict kinetic behaviors in new perturbation settings, and uncover novel populations of cells with distinct kinetic responses to perturbation.

摘要

高通量、多条件实验的最新进展使得在全基因组范围内研究扰动如何影响细胞中多个生物实体或模式下的转录和翻译成为可能,这些生物实体或模式涵盖从染色质和mRNA信息到蛋白质产生及空间形态等方面。这为揭示DNA和RNA调控过程如何指导细胞命运决定和疾病反应提供了前所未有的机会。大多数用于分析大规模扰动数据的方法都聚焦于观测结果,例如表达;然而,许多潜在的转录机制,如转录爆发或剪接动力学,可能是这些复杂且有噪声的观测结果的基础。在本分析中,我们展示了一种用于解释高通量扰动数据的随机生物物理建模方法如何能够更深入地研究此类分子测量背后的“如何”。我们的方法利用当前技术产生的数据中已有的模式,如新生和成熟mRNA测量,来阐明扰动诱导的转录动力学,预测新扰动环境中的动力学行为,并发现对扰动具有不同动力学反应的新型细胞群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8320/11245117/8ca992b97e10/nihpp-2024.07.04.602131v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验